

1 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

[MS-ES3EX]:
Microsoft JScript Extensions to the ECMAScript Language
Specification Third Edition

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:

http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if
the technologies described in the Open Specifications are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Revision Summary

Date Revision History Revision Class Comments

03/26/2010 1.0 Major Initial Availability

3 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Table of Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Extension Overview (Synopsis) .. 7
1.3.1 Organization of This Documentation ... 8

1.4 Relationship to Protocols and Other Extensions .. 8
1.5 Applicability Statement ... 8

2 Extensions .. 9
2.1 Conditional Source Text Processing .. 9

2.1.1 Global State .. 9
2.1.2 Conditional Processing Algorithm .. 10

2.2 Extensions to Types ... 19
2.2.1 SafeArray Type .. 19
2.2.2 VarDate Type ... 19

2.3 Extensions to Statements ... 19
2.3.1 debugger Statement ... 20

2.4 Extensions to Native ECMAScript Objects .. 20
2.4.1 Function Properties of the Global Object .. 20

2.4.1.1 ScriptEngine .. 20
2.4.1.2 ScriptEngineBuildVersion ... 20
2.4.1.3 ScriptEngineMajorVersion .. 20
2.4.1.4 ScriptEngineMinorVersion .. 20
2.4.1.5 CollectGarbage ... 21
2.4.1.6 RuntimeObject ... 21
2.4.1.7 GetObject .. 22

2.4.2 Constructor Properties of the Global Object ... 23
2.4.3 Object Functions in JScript 5.8 ... 23

2.4.3.1 Object.getOwnPropertyDescriptor (O, P) .. 23
2.4.3.2 Object.defineProperty (O, P, Attributes) .. 24

2.4.4 Properties of Function Instances ... 27
2.4.4.1 The arguments Property .. 27
2.4.4.2 The caller Property.. 27
2.4.4.3 The [[Get]] (P) Method of a Function Object .. 28

2.4.5 String.prototype HTML Wrapper Properties .. 28
2.4.5.1 String.prototype.anchor(name) .. 29
2.4.5.2 String.prototype.big() .. 29
2.4.5.3 String.prototype.blink() .. 29
2.4.5.4 String.prototype.bold() ... 29
2.4.5.5 String.prototype.fixed() .. 29
2.4.5.6 String.prototype.fontcolor(color) .. 29
2.4.5.7 String.prototype.fontsize(size) ... 29
2.4.5.8 String.prototype.italics() ... 29
2.4.5.9 String.prototype.link(url) ... 29
2.4.5.10 String.prototype.small() ... 29
2.4.5.11 String.prototype.strike() ... 29
2.4.5.12 String.prototype.sub() .. 30
2.4.5.13 String.prototype.sup() .. 30

4 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.4.6 Date Time String Format for JSON .. 30
2.4.6.1 Extended Years .. 31
2.4.6.2 Date.prototype.getVarDate () .. 31
2.4.6.3 Date.prototype.toJSON () ... 31

2.4.7 Properties of the RegExp Constructor .. 31
2.4.7.2 RegExp.input ... 31
2.4.7.3 RegExp.lastIndex .. 32
2.4.7.4 RegExp.lastMatch ... 32
2.4.7.5 RegExp.lastParen .. 32
2.4.7.6 RegExp.leftContext ... 32
2.4.7.7 RegExp.rightContext ... 32
2.4.7.8 RegExp.$1 - RegExp.$9 ... 32
2.4.7.9 RegExp.$_ ... 32
2.4.7.10 RegExp['$&'] .. 33
2.4.7.11 RegExp['$+'] .. 33
2.4.7.12 RegExp["$`"] ... 33
2.4.7.13 RegExp["$'"] .. 33

2.4.8 Properties of the RegExp Prototype Object .. 33
2.4.8.1 RegExp.prototype.compile(pattern, flags) .. 33

2.4.9 Properties of the RegExp Instances ... 34
2.4.9.1 options .. 34

2.4.10 The Error Constructor ... 34
2.4.10.1 new Error () ... 34
2.4.10.2 new Error(number, message) ... 34

2.4.11 Properties of Error Instances .. 35
2.4.11.1 description ... 35
2.4.11.2 number ... 35

2.4.12 Native Error Types Used in This Standard .. 35
2.4.12.1 RegExpError ... 35
2.4.12.2 ConversionError .. 35

2.4.13 Properties of NativeError Instances ... 35
2.4.13.1 description ... 35
2.4.13.2 number ... 35

2.4.14 The JSON Object .. 36
2.4.14.1 The JSON Grammar .. 36

2.4.14.1.1 The JSON Lexical Grammar... 36
2.4.14.1.2 The JSON Syntactic Grammar ... 37

2.4.14.2 parse (text [, reviver]) .. 38
2.4.14.3 stringify (value [, replacer [, space]]) .. 40

2.4.15 The Debug Object ... 46
2.4.15.1 Function Properties of the Debug Object .. 46

2.4.15.1.1 write ([item1 [, item2 [, …]]]) .. 47
2.4.15.1.2 writeln ([item1 [, item2 [, …]]])) .. 47

2.4.16 Enumerator Objects .. 47
2.4.16.1 The Enumerator Constructor Called as a Function 47
2.4.16.2 The Enumerator Constructor .. 47

2.4.16.2.1 new Enumerator ([collection])... 47
2.4.16.3 Properties of the Enumerator Constructor .. 48

2.4.16.3.1 Enumerator.prototype .. 48
2.4.16.4 Properties of the Enumerator Prototype Object ... 48

2.4.16.4.1 Enumerator.prototype.constructor ... 48
2.4.16.4.2 Enumerator.prototype.atEnd () .. 48
2.4.16.4.3 Enumerator.prototype.item () .. 48

5 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.4.16.4.4 Enumerator.prototype.moveFirst () .. 49
2.4.16.4.5 Enumerator.prototype.moveNext () .. 49

2.4.16.5 Properties of Enumerator Instances ... 49
2.4.17 VBArray Objects ... 49

2.4.17.1 The VBArray Constructor Called as a Function .. 49
2.4.17.1.1 VBArray (value) ... 49

2.4.17.2 The VBArray Constructor ... 50
2.4.17.2.1 new VBArray (value) .. 50

2.4.17.3 Properties of the VBArray Constructor ... 50
2.4.17.3.1 VBArray.prototype ... 50

2.4.17.4 Properties of the VBArray Prototype Object .. 50
2.4.17.4.1 VBArray.prototype.constructor .. 50
2.4.17.4.2 VBArray.prototype.dimensions () .. 50
2.4.17.4.3 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]]) 51
2.4.17.4.4 VBArray.prototype.lbound ([dimension]) .. 51
2.4.17.4.5 VBArray.prototype.toArray () ... 51
2.4.17.4.6 VBArray.prototype.ubound ([dimension]) ... 52
2.4.17.4.7 VBArray.prototype.valueOf () ... 52

2.4.17.5 Properties of VBArray Instances .. 52
2.4.18 ActiveXObject Objects ... 53

2.4.18.1 The ActiveXObject Constructor Called as a Function 53
2.4.18.1.1 ActiveXObject (name [, location])) ... 53

2.4.18.2 The ActiveXObject Constructor ... 53
2.4.18.2.1 new ActiveXObject ((name [, location])) .. 53

2.4.18.3 Properties of the ActiveXObject Constructor ... 54
2.4.18.3.1 ActiveXObject.prototype ... 54

2.4.18.4 Properties of the ActiveXObject Prototype Object .. 54
2.4.18.4.1 ActiveXObject.prototype.constructor .. 54

2.4.18.5 Properties of ActiveXObject Instances .. 54

3 Security Considerations .. 55

4 Appendix A: Product Behavior .. 56

5 Change Tracking... 57

6 Index ... 58

6 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

1 Introduction

This document describes extensions provided by Windows® Internet Explorer® 7 and Internet
Explorer 8 to the ECMAScript Language Specification 3rd Edition [ECMA-262]—a candidate
recommendation published December 1999. These extensions are provided by the JScript 5.x
language that is implemented in Internet Explorer 7 and Internet Explorer 8.

1.1 Glossary

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[CSS-Level2-2009] Bos, B., Celik, T., Hickson, I., and Wium Lie, H., Eds., "Cascading Style Sheets
Level 2 Revision 1 (CSS 2.1) Specification", W3C Candidate Recommendation 08 September 2009,
http://www.w3.org/TR/2009/CR-CSS2-20090908/

[DOM Level 2 - Core] W3C, "Document Object Model (DOM) Level 2 Core Specification Version 1.0",
W3C Recommendation 13 November, 2000, http://www.w3.org/TR/DOM-Level-2-Core/

[DOM Level 2 - HTML] W3C, "Document Object Model (DOM) Level 2 HTML Specification Version
1.0", W3C Recommendation 09 January 2003, http://www.w3.org/TR/DOM-Level-2-HTML/

[DOM Level 2 - Style] W3C, "Document Object Model (DOM) Level 2 Style Specification Version 1.0",
W3C Recommendation 13 November, 2000, http://www.w3.org/TR/DOM-Level-2-Style/

[ECMA-262/5] ECMA International, "Standard ECMA-262ECMAScript Language Specification", 5th
Edition (December 2009), http://www.ecma-international.org/publications/standards/Ecma-262.htm

[ECMA-262] ECMA international, "ECMAScript Language Specification" ECMA-262, December 1999,
http://www.ecma-international.org/publications/standards/Ecma-262.htm

[HTML] World Wide Web Consortium, "HTML 4.01 Specification", December 1999,
http://www.w3.org/TR/html4/

[ISO-8601] International Organization for Standardization, "Data Elements and Interchange Formats

- Information Interchange - Representation of Dates and Times", ISO/IEC 8601:2004, December
2004,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&ICS1=1&ICS2

=140&ICS3=30

Note There is a charge to download the specification.

[MS-CSS21E] Microsoft Corporation, "Internet Explorer Extensions to the Cascading Style Sheets
(CSS) 2.1 Specification", March 2010.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=182880
http://go.microsoft.com/fwlink/?LinkId=182703
http://go.microsoft.com/fwlink/?LinkId=182708
http://go.microsoft.com/fwlink/?LinkId=182710
http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=115082
http://go.microsoft.com/fwlink/?LinkId=89880
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=89920
%5bMS-CSS21E%5d.pdf
%5bMS-CSS21E%5d.pdf

7 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

[MS-DOM2CE] Microsoft Corporation, "Internet Explorer Extensions to the Document Object Model
(DOM) Level 2 Core Specification", March 2010.

[MS-DOM2CEX] Microsoft Corporation, "Microsoft XML Extensions to the Document Object Model
(DOM) Level 2 Core Specification", March 2010.

[MS-HTML401E] Microsoft Corporation, "Internet Explorer Extensions to the HTML 4.01
Specification", March 2010.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC4627] Crockford, D., "The application/json Media Type for Javascript Object Notation (JSON)",
RFC 4627, July 2006, http://www.ietf.org/rfc/rfc4627.txt

1.2.2 Informative References

None.

1.3 Extension Overview (Synopsis)

The extensions described in this document were selected for their applicability to [ECMA-262].
Portions of this document also refer to [ECMA-262/5], the ECMAScript Language Specification 5th

Edition, December 2009.

These extensions are organized based on sections of [ECMA-262] as follows.

Section 7, Lexical Conventions

Global State

Conditional Processing Algorithm

Section 8, Types

Section 12, Statements

Section 15, Native ECMAScript Objects

Function Properties of the Global Object

Constructor Properties of the Global Object

Object Functions in JScript 2.4.3

Properties of Function Instances

String.prototype HTML Wrapper Properties

Date Time String Format for JSON

Properties of the RegExp Constructor

Properties of the RegExp Prototype Object

Properties of the RegExp Instances

The Error Constructor

%5bMS-DOM2CE%5d.pdf
%5bMS-DOM2CE%5d.pdf
%5bMS-DOM2CEX%5d.pdf
%5bMS-DOM2CEX%5d.pdf
%5bMS-HTML401E%5d.pdf
%5bMS-HTML401E%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=140879
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=153655

8 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Properties of Error Instances

Native Error Types Used in This Standard

Properties of NativeError Instances

The JSON Object

The Debug Object

Enumerator Objects

VBArray Objects

ActiveXObject Objects

1.3.1 Organization of This Documentation

This document is organized as follows:

Conditional Source Text Processing: Processing of source text by JScript 5.x.

Extensions to Types: Types defined by JScript 5.x that supplement types of [ECMA-262].

Extensions to Statements: A statement defined by JScript 5.x that supplements statements of

[ECMA-262].

Extensions to Native ECMAScript Objects: Object extensions defined by JScript 5.x are listed

according to object at the highest level.

Properties: The object properties defined by JScript 5.x, typically functions, methods, or data

formats, are described at the next levels.

1.4 Relationship to Protocols and Other Extensions

The following documents provide additional extensions.

[MS-HTML401E]: Extensions to [HTML] and the [DOM Level 2 - HTML] specifications.

[MS-CSS21E]: Extensions to the [CSS-Level2-2009] and [DOM Level 2 - Style] specifications.

[MS-DOM2CE] and [MS-DOM2CEX]: Extensions to the [DOM Level 2 - Core] specification for

Internet Explorer and Microsoft XML Core Services.

1.5 Applicability Statement

This document specifies a set of extensions to the [ECMA-262] specifications. The extensions in this
document provide access to some features that are unique to Internet Explorer 7 and Internet

Explorer 8.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
%5bMS-HTML401E%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89880
http://go.microsoft.com/fwlink/?LinkId=182708
%5bMS-CSS21E%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=182880
http://go.microsoft.com/fwlink/?LinkId=182710
%5bMS-DOM2CE%5d.pdf
%5bMS-DOM2CEX%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=182703
http://go.microsoft.com/fwlink/?LinkId=153655

9 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2 Extensions

2.1 Conditional Source Text Processing

When converting source text into input elements, JScript 5.x first does the processing necessary to
remove or replace any conditional text spans and then does the input element conversion using the
results of that processing as the actual sources text input to the identification of lexical input
elements.

Each Program (see [ECMA-262] section 14), whether presented as either a discrete source text or

as the argument to the eval built-in function, and each FunctionBody (see [ECMA-262] section 13)
processed by the standard built-in Function constructor ([ECMA-262] section 15.3.2.1) has
conditional source text processing performed independently upon it.

NOTE

This specification defines conditional source text processing as if it was performed over an entire
source text prior to any input element identification. It is an unobservable implementation detail

whether this processing is actually performed in that manner or if it is performed incrementally

interweaved with input element identification.

2.1.1 Global State

The following state is shared by the conditional source text processing of all independent source
texts that make up an ECMAScript program (see [ECMA-262] section 14). The state is initialized as
defined below prior to the first such processing.

SubstitutionEnabled Boolean flag with an initial value of false.

CCvariables A set of association between string valued keys and values. The keys are

strings. The values may be either ECMAScript Number ([ECMA-262] section 8.5) or Boolean
([ECMA-262] section 8.3) values. The initial associations are defined in the following table:

Key Initial Value

"_win32" Defined as true if this JScript 5.x implementation is a Microsoft 32-bit-based
implementation. Otherwise this association is not initially defined.

"_win64" Defined as true if this JScript 5.x implementation is a Microsoft 64-bit-based
implementation. Otherwise this association is not initially defined.

"_x86" Defined as true when running on a processor using the x86-based architecture.
Otherwise this association is not initially defined.

"_ia64" Defined as true when running on a processor using the Itanium 64-bit
architecture. Otherwise this association is not initially defined.

"_amd64" Defined as true when running on a processor using the x64 architecture.
Otherwise this association is not initially defined.

"_jscript" True

"_jscript_build" Number value that identifies the specific build of the JScript 5.x implementation
that is running.

"_jscript_version" Number value representing the version of the JScript 5.x language implementation.
The value 5.7 indicates that the implementation only supports features of the

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

10 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Key Initial Value

JScript 5.7 language. The value 5.8 indicates that the implementation supports
both 5.7 and 5.8 language features.

"_microsoft" Defined as true when running on a JScript 5.x implementation provided by
Microsoft. Otherwise this association is not initially defined.

2.1.2 Conditional Processing Algorithm

For each source text to be processed let source be the original source text (a sequence of Unicode
characters) and let output initially be an empty sequence of Unicode characters. Let IfNestingLevel
be 0.

Processing of source proceeds by recognizing specific input elements from source and then taking
specified actions. The processing is organized into several "states". The specific input elements that
are recognized and the subsequent semantic action that is taken varies among states. The semantic
action taken for a recognized input element may include transitioning to a different state. Processing

of a source text begins by recognizing CCInputElementState0 if SubstitutionEnabled is false and
CCInputElementState1 if SubstitutionEnabled is true.

The input elements for conditional processing are defined by the following grammar, which has
Unicode characters as terminal symbols. Some rules of the grammar are defined using rules of the
ECMAScript lexical grammar.

Syntax

NOTE:

CCInputElementState0 is recognized during top level conditional processing when
SubstitutionEnabled is false. When recognizing a RegularExpressionLiteral in this state the
contextual distinction between RegularExpressionLiteral and DivPunctuator (see [ECMA-262] section
7) must be respected.

CCInputElementState0 ::

RegularExpressionLiteral

StringLiteral

CCOn

CCSet0

CCIf0

CCMultiLineComment0

CCSingleLinecomment0

SourceCharacter

CCOn ::

@ CCOnId

/*@ CCOnId

11 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

//@ CCOnId

CCOnId ::

cc_on [lookahead IdentifierPart]

CCSet0 ::

@set [lookahead IdentifierPart]

CCIf0 ::

@if [lookahead IdentifierPart]

CCMultiLineComment0 ::

/* [lookahead ≠ CCOnId] MultiLineCommentCharsopt */

SingleLineComment0 ::

// [lookahead ≠ CCOnId] SingleLineCommentCharsopt

Semantics

If CCInputElementState0 cannot be recognized because there are no remaining characters in source
then Conditional Source processing is completed and the characters of the output supply the
Unicode characters for subsequent input element processing. If CCInputElementState0 cannot be
recognized and there are characters in source a SyntaxError exception is thrown.

The productions CCInputElementState0 :: RegularExpressionLiteral, CCInputElementState0 ::

StringLiteral, CCInputElementState0 :: CCMultiLineComment0, CCInputElementState0 ::
CCSingleLinecomment0, and CCInputElementState0 :: SourceCharacter upon recognition perform
the following actions:

1. Append to the end of output, in left to right sequence, the Unicode characters from source that

were recognized by the production. Remove the recognized characters from source.

2. Use CCInputElementState0 to recognize the next input element from source.

The production CCInputElementState0 :: CCOn upon recognition performs the following actions:

1. Set SubstitutionEnable to true.

2. Append a <SP> character to the end of output. Remove the recognized characters from source.

3. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementState0 :: CCSet0 upon recognition performs the following actions:

1. Set SubstitutionEnable to true.

2. Append a <SP> character to the end of output. Remove the recognized characters from source.

3. Use CCInputElementStateSetLHS to recognize the next input element from source.

The production CCInputElementState0 :: CCIf0 upon recognition performs the following actions:

1. Set SubstitutionEnable to true.

12 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2. Append a <SP> character to the end of output. Remove the recognized characters from source.

3. Increment the value of IfNestingLevel by 1.

4. Use CCInputElementStateIfPredicate to recognize the next input element from source.

Syntax

NOTE:

CCInputElementState1 is recognized during active conditional processing when SubstitutionEnabled
is true. This may be at the top level or in the clause of an @if statement that represents the "true"
condition. When recognizing a RegularExpressionLiteral in this state the contextual distinction
between RegularExpressionLiteral and DivPunctuator (see [ECMA-262] section 7) must be
respected.

CCInputElementState1 ::

RegularExpressionLiteralStringLiteralCCOnCCSet1CCIf1CCElif1CCElse1CCEnd1CCSubstitution1CCSta

rtMarkerCCEndMarkerCCMultiLineComment1CCSingleLinecomment1SourceCharacter

CCSet1 ::

@set [lookahead IdentifierPart]/*@set [lookahead IdentifierPart]//@set [lookahead IdentifierPart
]

CCIf1 ::

@if [lookahead IdentifierPart]/*@if [lookahead IdentifierPart]//@if [lookahead IdentifierPart]

CCElif1 ::

@elif [lookahead IdentifierPart]/*@elif [lookahead IdentifierPart]//@elif [lookahead IdentifierPart
]

CCElse1 ::

@else [lookahead IdentifierPart]/*@else [lookahead IdentifierPart]//@else [lookahead
IdentifierPart]

CCEnd1 ::

@end [lookahead IdentifierPart]/*@end [lookahead IdentifierPart]//@end [lookahead
IdentifierPart]

CCSubstitution1 ::

@ CCSubIdentifier/*@ CCSubIdentifier//@ CCSubIdentifier

CCStartMarker ::

/*@ //@

CCEndMarker ::

@*/

CCMultiLineComment1 ::

13 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

/* [lookahead ≠ @] MultiLineCommentCharsopt */

SingleLineComment1 ::

// [lookahead ≠ @] SingleLineCommentCharsopt

CCSubIdentifer ::

[lookahead CCKeyword] IdentifierName

CCKeyword ::

cc_on setifelif elseend

Semantics

If CCInputElementState1 cannot be recognized because there are no remaining characters in source
then Conditional Source processing is completed and the characters of the output supply the
Unicode characters for subsequent input element processing. If CCInputElementState1 cannot be

recognized and there are characters in source a SyntaxError exception is thrown.

The productions CCInputElementState1 :: RegularExpressionLiteral, CCInputElementState1 ::
StringLiteral, CCInputElementState1 :: CCMultiLineComment1, CCInputElementState1 ::
CCSingleLinecomment1, and CCInputElementState1 :: SourceCharacter upon recognition perform
the following actions:

1. Append to the end of output, in left to right sequence, the Unicode characters from source that

were recognized by the production. Remove the recognized characters from source.

2. Use CCInputElementState1 to recognize the next input element from source.

The productions CCInputElementState1 :: CCOn, CCInputElementState1 :: CCStartMarker ,
CCInputElementState1 :: CCEndMarker upon recognition perform the following actions:

1. Append a <SP> character to the end of output. Remove the recognized characters from source.

2. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementState1 :: CCSet1 upon recognition performs the following actions:

1. Append a <SP> character to the end of output. Remove the recognized characters from source.

2. Use CCInputElementStateSetLHS to recognize the next input element from source.

The production CCInputElementState1 :: CCIf1 upon recognition performs the following actions:

1. Append a <SP> character to the end of output. Remove the recognized characters from source.

2. Increment the value of IfNestingLevel by 1.

3. Use CCInputElementStateIfPredicate to recognize the next input element from source.

The production CCInputElementState1 :: CCElif1 upon recognition performs the following actions:

1. Remove the recognized characters from source.

2. If IfNestingLevel is 0, then throw a SyntaxError Exception.

3. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

14 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

The production CCInputElementState1 :: CCElse1 upon recognition performs the following actions:

1. Remove the recognized characters from source.

2. If IfNestingLevel is 0, then throw a SyntaxError Exception.

3. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

The production CCInputElementState1 :: CCEnd upon recognition performs the following actions:

1. Append a <SP> character to the end of output. Remove the recognized characters from source.

2. If IfNestingLevel is 0, then throw a SyntaxError Exception.

3. Decrement the value of IfNestingLevel by 1.

4. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementState1 :: CCSubstitution1 upon recognition performs the following

actions:

1. Let var be the string of characters recognized as the CCSubIdentifier element of CCSubstitution1.

2. If the value of var is a key of CCVariables, then let the value be the associated value. Otherwise,
let value be the string "NaN"

3. Let value be ToString(value)

4. Append the characters of the string value of value to the end of output.

5. Remove the recognized characters from source.

6. Use CCInputElementStateIfPredicate to recognize the next input element from source.

Syntax

NOTE:

CCInputElementStateSetLHS is recognized during active conditional processing of the body of a
@set statement.

CCInputElementStateSetLHS ::

WhiteSpaceopt @ IdentifierName WhiteSpaceopt = CCExpression

Semantics

If CCInputElementStateSetLHS cannot be recognized a SyntaxError exception is thrown.

The production CCInputElementStateSetLHS :: WhiteSpaceopt @ IdentifierName WhiteSpaceopt =
CCExpression upon recognition performs the following actions:

1. Let setName be the string of characters recognized as the IdentifierName element of

CCSubstitution1.

2. Let value be the result of evaluating CCExpression.

3. Create an association within CCVariables where the key is the string value of setName and where
the value is value. If an association with that key already exists, replace it.

15 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

4. Remove the recognized characters from source.

5. Use CCInputElementState1 to recognize the next input element from source.

Syntax

NOTE:

CCInputElementStateIfPredicate is recognized during active conditional processing of the predicate
portion of a @if or @elif statement.

CCInputElementStateIfPredicate ::

WhiteSpaceopt (CCExpression WhiteSpaceopt)

Semantics

If CCInputElementStateIfPredicate cannot be recognized a SyntaxError exception is thrown.

The production CCInputElementStateSetIfPredicate :: WhiteSpaceopt (CCExpression WhiteSpaceopt

) upon recognition performs the following actions:

1. Let predicate be the result of evaluating CCExpression.

2. Increment the value of IfNestingLevel by 1.

3. Set SkippedIfNestingLevel to 0.

4. Remove the recognized characters from source.

5. If ToBoolean(predicate) is true, then use CCInputElementState1 to recognize the next input

element from source.

6. Otherwise, use CCInputElementStateFalseThen to recognize the next input element from source.

Syntax

NOTE:

CCInputElementStateFalseThen is recognized during processing of false clauses of an @if statement
for which the true clause has not yet been processed. The current clause may be a "then" clause, an
@elif clause, or an @else clause.

CCInputElementStateFalseThen ::

@if [lookahead IdentifierPart]@elif [lookahead IdentifierPart]@else [lookahead IdentifierPart
]@end [lookahead IdentifierPart]SourceCharacter

Semantics

If CCInputElementStateFalseThen cannot be recognized a SyntaxError exception is thrown.

The production CCInputElementStateFalseThen :: @if [lookahead IdentifierPart] upon recognition
performs the following actions:

1. Increment the value of SkippedIfNestingLevel by 1.

2. Remove the recognized characters from source.

16 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

3. Use CCInputElementStateFalseThen to recognize the next input element from source.

The production CCInputElementStateFalseThen :: @elif [lookahead IdentifierPart] upon recognition

performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel > 0, then use CCInputElementStateFalseThen to recognize the next
input element from source.

3. Otherwise use CCInputElementStateIfPredicate to recognize the next input element from source.

The production CCInputElementStateFalseThen :: @else [lookahead IdentifierPart] upon recognition
performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel > 0, then use CCInputElementStateFalseThen to recognize the next

input element from source.

3. Otherwise use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementStateFalseThen :: @end [lookahead IdentifierPart] upon recognition
performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel is 0, then go to step 6.

3. Decrement the value of SkippedIfNestingLevel by 1.

4. Use CCInputElementStateFalseThen to recognize the next input element from source.

5. Return.

6. Decrement the value of IfNestingLevel by 1.

7. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementStateFalseThen :: SourceCharacter upon recognition performs the
following actions:

1. Remove the recognized characters from source.

2. Use CCInputElementStateFalseThen to recognize the next input element from source.

Syntax

NOTE:

CCInputElementStateFalseThen is recognized during processing of false clauses of an @if statement
for which the true clause has already been processed. It is also used during processing of all clauses

of a @if statement that is nested within a false clause of an enclosing @if statement. The current

clause may be a "then" clause, an @elif clause or an @else clause.

CCInputElementStateFalseIfTail ::

@if [lookahead IdentifierPart]@elif [lookahead IdentifierPart]@else [lookahead IdentifierPart
]@end [lookahead IdentifierPart]SourceCharacter

17 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Semantics

If CCInputElementStateFalseIfTail cannot be recognized a SyntaxError exception is thrown.

The production CCInputElementStateFalseIfTail :: @if [lookahead IdentifierPart] upon recognition
performs the following actions:

1. Increment the value of SkippedIfNestingLevel by 1.

2. Remove the recognized characters from source.

3. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

The productions CCInputElementStateFalseIfTail :: @elif [lookahead IdentifierPart] and
CCInputElementStateFalseIfTail :: @else [lookahead IdentifierPart] upon recognition perform the
following actions:

1. Remove the recognized characters from source.

2. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

The production CCInputElementStateFalseIfTail :: @end [lookahead IdentifierPart] upon recognition
performs the following actions:

1. Remove the recognized characters from source.

2. If SkippedIfNestingLevel is 0, then go to step 6.

3. Decrement the value of SkippedIfNestingLevel by 1.

4. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

5. Return.

6. Decrement the value of IfNestingLevel by 1.

7. Use CCInputElementState1 to recognize the next input element from source.

The production CCInputElementStateFalseIfTail :: SourceCharacter upon recognition performs the
following actions:

1. Remove the recognized characters from source.

2. Use CCInputElementStateFalseIfTail to recognize the next input element from source.

Syntax

CCExpression ::

CCLogicalANDExpression

CExpression WhiteSpaceopt || CCLogicalANDExpression

CCLogicalANDExpression ::

CCBitwiseORExpressionCCcLogicalANDExpression WhiteSpaceopt && CCBitwiseORExpression

CCBitwiseORExpression ::

18 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

CCBitwiseXORExpressionCCBitwiseORExpression WhiteSpaceopt | CCBitwiseXORExpression

CCBitwiseXORExpression ::

CCBitwiseANDExpressionCCBitwiseXORExpression WhiteSpaceopt ^ CCBitwiseANDExpression

CCBitwiseANDExpression ::

CCEqualityExpressionCCBitwiseANDExpression WhiteSpaceopt & CCEqualityExpression

CCEqualityExpression ::

CCRelationalExpressionCCEqualityExpression WhiteSpaceopt ==
CCRelationalExpressionCCEqualityExpression WhiteSpaceopt!=
CCRelationalExpressionCCEqualityExpression WhiteSpaceopt ===
CCRelationalExpressionCCEqualityExpression WhiteSpaceopt !== CCRelationalExpression

CCRelationalExpression ::

CCShiftExpressionCCRelationalExpression WhiteSpaceopt <
CCShiftExpressionCCRelationalExpression WhiteSpaceopt >
CCShiftExpressionCCRelationalExpression WhiteSpaceopt <=
CCShiftExpressionCCRelationalExpression WhiteSpaceopt >= CCShiftExpression

CCShiftExpression ::

CCAdditiveExpressionCCShiftExpression WhiteSpaceopt <<

CCAdditiveExpressionCCShiftExpression WhiteSpaceopt >>
CCAdditiveExpressionCCShiftExpression WhiteSpaceopt >>> CCAdditiveExpression

CCAdditiveExpression ::

CCMultiplicativeExpressionCCAdditiveExpression WhiteSpaceopt +
CCMultiplicativeExpressionCCAdditiveExpression WhiteSpaceopt – CCMultiplicativeExpression

CCMultiplicativeExpression ::

CCUnaryExpressionCCMultiplicativeExpression WhiteSpaceopt *

CCUnaryExpressionCCMultiplicativeExpression WhiteSpaceopt /
CCUnaryExpressionCCMultiplicativeExpression WhiteSpaceopt % CCUnaryExpression

UnaryExpression ::

CCPrimaryExpressionWhiteSpaceopt + CCUnaryExpressionWhiteSpaceopt -
CCUnaryExpressionWhiteSpaceopt ~ CCUnaryExpressionWhiteSpaceopt! CCUnaryExpression

CCPrimaryExpression ::

CCVariableCCLiteralWhiteSpaceopt (Expression)

CCLiteral ::

WhiteSpaceopt true [lookahead IdentifierPart]WhiteSpaceopt false [lookahead IdentifierPart
]WhiteSpaceopt Infinity [lookahead IdentifierPart]WhiteSpaceopt NumericLiteral

CCVariable ::

WhiteSpaceopt @ IdentifierName

19 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Semantics

Unless otherwise specified below, the productions of CCExpression are evaluated using the same

semantic rules as the analogous productions of the ECMAScript syntactic grammar for Expression in
[ECMA-262] section 11. However, only values of types Number and Boolean can occur during the

evaluation of CCExpression productions so any semantic steps that are relative to other types of
values are not relevant.

The production CCLiteral :: WhiteSpaceopt true [lookahead IdentifierPart] is evaluated by returning
the value true.

The production CCLiteral :: WhiteSpaceopt false [lookahead IdentifierPart] is evaluated by
returning the value false.

The production CCLiteral :: WhiteSpaceopt Infinity [lookahead IdentifierPart] is evaluated by

returning the value +∞.

The production CCVariable :: WhiteSpaceopt @ IdentifierName is evaluated by performing the
following steps:

1. Let var be the string of characters recognized as the IdentifierName element of CCVariable.

2. If the value of var is a key of CCVariables, then let value be the associated value. Otherwise, let
value be NaN.

3. Return value.

2.2 Extensions to Types

JScript 5.x defines extensions to types of [ECMA-262] that are described in the following sections.

2.2.1 SafeArray Type

The SafeArray type is the set of all references to Microsoft COM SAFEARRAY data structures.

SafeArray values can be created only by host objects and host functions. SafeArray values can be

manipulated similarly to other ECMAScript data types.

2.2.2 VarDate Type

The VarDate type is the set of all references to Microsoft COM VARIANT data structures that have a

VARTYPE enumeration value of VT_DATE.

VarDate values can be created only by host objects and host functions, or by calling the

getVarDate method by using the prototype property of the Date object:
Date.prototype.getVarDate. VarDate values can be manipulated similarly to other ECMAScript

data types.

2.3 Extensions to Statements

JScript 5.x defines an extension to statements of [ECMA-262] that is described in the following
section.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

20 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.3.1 debugger Statement

The debugger statement causes a breakpoint to be entered if a debugger is available. If a debugger

does not exist or is not active, this statement has no observable effect.

Semantics

In JScript 5.x implementations, the debugger statement is evaluated as follows:

1.If a debugger is not available or is not active for this statement, return (normal, empty, empty).

2.Otherwise, suspend execution and enter the debugger.

3.When the debugging action is complete, if the debugger supplies a completion result, return that

result; otherwise, return (normal, empty, empty).

2.4 Extensions to Native ECMAScript Objects

JScript 5.x defines extensions to the native ECMAScript objects of [ECMA-262]. These extensions

are described in the following sections.

2.4.1 Function Properties of the Global Object

JScript 5.x defines additional properties of the Global object of [ECMA-262]. These properties are
described in the following sections.

2.4.1.1 ScriptEngine

When the ScriptEngine function is called, it returns a string value that specifies the
implementation-defined name of the ECMAScript implementation that is executing the call. The
JScript 5.x implementations within Internet Explorer 7 and Internet Explorer 8 always return the

string 'JScript.'

2.4.1.2 ScriptEngineBuildVersion

When the ScriptEngineBuildVersion function is called, it returns a value that uniquely identifies
the specific build of the ECMAScript implementation that is executing the call.

2.4.1.3 ScriptEngineMajorVersion

When the ScriptEngineMajorVersion function is called, it returns a value that identifies the major
revision level of the implementation, not the revision level of the ECMAScript or JScript language
specification that is currently supported by the implementation. This return value cannot be used as
a reliable indicator of the availability or lack of availability of specific language features.

The JScript 5.x implementations within Internet Explorer 7 and Internet Explorer 8 always return a
value of 5.

2.4.1.4 ScriptEngineMinorVersion

When the ScriptEngineMajorVersion function is called, it returns a value that identifies the minor
revision level of the implementation, not the revision level of the ECMAScript or JScript language
specification that is currently supported by the implementation. An implementation of JScript 5.x
that supports distinct modes that separately implement JScript 5.7 and JScript 5.8 functionality may
return a single value that does not vary among modes and that does not reflect the language level

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

21 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

implemented by the current mode. This return value cannot be used as a reliable indicator of the
availability or lack of availability of specific language features.

The JScript 5.x implementation within Microsoft Internet Explorer 7 always returns a value of 7. The
JScript 5.x implementation within Microsoft Internet Explorer 8 always returns a value of 8, even

when Internet Explorer 8 is operating in IE7 compatibility mode.

2.4.1.5 CollectGarbage

When the CollectGarbage function is called, the JScript 5.x implementation may attempt to reclaim
unused or unneeded resources that are associated with the currently running application. Whether
or not any action is actually taken depends on the current state of the execution environment and
the resource management strategies and heuristics used by the implementation. An application may

call this function to request that any such pending reclamation activities be completed immediately.
However, a JScript 5.x implementation is not required to honor such a request.

2.4.1.6 RuntimeObject

The RuntimeObject function is used to search a global object for properties with names that match
a specified pattern. The function only locates properties of the global object that were explicitly

created by VariableStatement or FunctionDeclaration functions, or that were implicitly created
by appearing as an identifier on the left side of an assignment operator. The function does not locate
properties that were created by means of explicit property access on the global object.

When the RuntimeObject function is called, the following steps are taken:

1.If pattern is present, set name to "*" and go to step 6.

2.Call the function toPrimitive(pattern, hint Number).

3.If the type of Result(2) is not String, raise a TypeError exception.

4.If Result(2) is the empty string, set name to "*" and go to step 6.

5.Set name = pattern.

6.Set the values of both leftWild and rightWild to false.

7.If the first character of name is "*", let leftWild be true, and remove the first character from
name.

8.If the last character of name is "*", let rightWild be true, and remove the last character from
name.

9.Let obj be a new ECMAScript object created as if by the expression new Object(), where Object

is the original built-in constructor with that name.

10.Let enum be an enumeration of the names of the properties of the global object.

11.Let n be the next element of enum. If there are no more elements, return obj.

12.If n is the name of a built-in property defined by [ECMA-262] Section 15.1, or by the
implementation or the host environment, go to step 11.

13.If n was not created by variable instantiation ([ECMA-262] Section 10.1.3), or by an assignment
operator in which the left side was the identifier n, go to step 11.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

22 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

14.If name is the empty string, go to step 19.

15.Search for the first substring name within n, and let left be the position within n of the first

character of the matched substring, and let right be the position within n of the last character of the
matched substring.

16.If a substring match was not found, go to step 11.

17.If leftWild is false and left is not 1, go to step 11.

18.If rightWild is false and right is not the last character position of n, go to step 11.

19.Let value be the result of calling the [[Get]] property of the global object, passing n as the
argument.

20.If value is undefined, go to step 11.

21.Call the [[Put]] method of obj, passing n and value as arguments.

22.Go to step 11.

The length property of the RuntimeObject function has a value of 1.

2.4.1.7 GetObject

The GetObject function is similar to the ActiveXObject constructor in that it provides a mechanism
for creating and interacting with host objects provided by Microsoft Windows ActiveX automation

servers. GetObject is used when a current automation object is already active, or if an automation
object is to be retrieved from a file. When the GetObject constructor is called with one or more
arguments, the following steps are taken:

1.Call toPrimitive(nameOrPath, hint Number).

2.If the type of Result(1) is not String, raise a TypeError exception.

3.If Result(1) is the empty string, raise a TypeError exception.

4.If name is not present, go to step 7.

5.Call the function toPrimitive(name, hint Number).

6.If the type of Result(5) is not String, raise a TypeError exception.

7.If only one argument was passed to this function, the string value of Result(1) may be an
implementation-dependent file locator or an implementation-dependent automation object name. If
two arguments were passed, Result(1) is a file locator, and Result(5) is the automation object
name. If only one argument was passed, Step 8 first attempts to interpret Result(1) as a file path; if
not successful, Step 8 attempts to interpret Result(1) as an automation object name.

8.Attempt to create or retrieve a host object that can be used to communicate with the application
and application-specific object identified by Result(1) and Result(5).

9.If any error occurs during Step(8) such that the host object cannot be created or retrieved, raise
an Error exception.

10.Return Result(8).

23 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

The format of the string values passed as arguments to this function are defined by the host
operating system.

The length property of the GetObject function has a value of 1.

2.4.2 Constructor Properties of the Global Object

JScript 5.x defines the following additional constructor properties of the Global object:

RegExpError

ConversionError

JSON

Debug

Enumerator

VBArray

ActiveXObject

2.4.3 Object Functions in JScript 5.8

The following two functions implement functionality similar to that of the like-named functions
defined in the ECMAScript, 5th Edition Specification ([ECMA-262/5]). In the definition of these
functions, the term "data property" means a normal ECMAScript 3rd Edition property as defined in
[ECMA-262] section 4.3.3. The term "accessor property" means a property that has two function
objects associated with it, such that accessing the property using its object's [[Get]] and [[Put]]
internal methods cause one of the functions to be implicitly invoked. The associated function that is

invoked when the [[Get]] method is called is known as the "get" function of the accessor property.
The value that the get function returns is used as the return value of the [[Get]] method. The
associated function that is invoked when the [[Put]] method is called is known as the "set" function

of the accessor property. The second argument of the [[Put]] method is passed as the argument to
the set function.

2.4.3.1 Object.getOwnPropertyDescriptor (O, P)

This function is not defined for JScript 5.7. It exists only in JScript 5.8.

When the getOwnProperty function is called, the following steps are taken:

1. If the Type(O) is not Object, raise a TypeError exception.

2. If the O is not a host object that supports property access using this function, raise a TypeError
exception.

3. Let name be ToString(P)

4. If O does not have an own property named name, return a new object created as if by evaluating
the ECMAScript expressions: {configurable:true,enumerable: true,value: undefined,
writable: true}

5. Let desc be a new object created as by evaluating the expression { }.

http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=153655

24 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

6. If the own property named name of O has the DontEnum attribute, let flag be true; if it does not
have the DontEnum attribute, let flag be false.

7. Call the [[Put]] method of desc passing "enumerable" and flag as arguments.

8. If the own property named name of O has the DontDelete attribute, let flag be false; if it does

not, have the DontEnum attribute let flag be true.

9. Call the [[Put]] method of desc passing "configurable" and flag as arguments.

10.If the own property named name of O is an accessor property, go to step 16.

11.Let value be the current value of the own property named name of O.

12.Call the [[Put]] method of desc passing "value" and value as arguments.

13.If the own property named name of O has the ReadOnly attribute, let flag be false; if it does not
have the ReadOnly attribute, let flag be true.

14.Call the [[Put]] method of desc passing "writable" and flag as arguments.

15.Return desc.

16.If the own accessor property named name of O has a defined get function, let func be that
function object; otherwise, let func be undefined.

17.Call the [[Put]] method of desc passing "get" and func as arguments.

18.If the own accessor property named name of O has a defined set function, let func be that

function object; otherwise, let func be undefined.

19.Call the [[Put]] method of desc passing "set" and func as arguments.

20.Return desc.

2.4.3.2 Object.defineProperty (O, P, Attributes)

This function is not defined for JScript 5.7. It exists only in JScript 5.8.

When the defineProperty function is called, the following steps are taken:

1. If the Type(O) is not Object, raise a TypeError exception.

2. If the O is not a host object that supports property creation using this function, raise a
TypeError exception.

3. Let name be ToString(P).

4. Let attrs be ToObject(Attributes).

5. Let enumerable be undefined.

6. If the result of calling the [[HasProperty]] internal method of O with argument "enumerable"

is false, go to step 9.

7. Let val be the result of calling the [[Get]] internal method of O with "enumerable".

8. Let enumerable be ToBoolean(val).

25 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

9. Let configurable be undefined.

10.If the result of calling the [[HasProperty]] internal method of O with argument

"configurable" is false, go to step 13.

11.Let val be the result of calling the [[Get]] internal method of O with "configurable".

12.Let configurable be ToBoolean(val).

13.Let valuePresent be false.

14.If the result of calling the [[HasProperty]] internal method of O with argument "value" is
false, go to step 17.

15.Let value be the result of calling the [[Get]] internal method of O with "value".

16.Let valuePresent be true.

17.Let writable be undefined.

18.If the result of calling the [[HasProperty]] internal method of O with argument "writable" is
false, go to step 21.

19.Let val be the result of calling the [[Get]] internal method of O with "writable".

20.Let writable be ToBoolean(val).

21.Let getPresent be false.

22.If the result of calling the [[HasProperty]] internal method of O with argument "get" is false,

go to step 27.

23.Let getter be the result of calling the [[Get]] internal method of O with "get".

24.Let getPresent be true.

25.If getter is undefined, go to step 27.

26.If getter is not a function, raise a TypeError exception.

27.Let setPresent be false.

28.If the result of calling the [[HasProperty]] internal method of O with argument "set" is false,

go to step 33.

29.Let setter be the result of calling the [[Get]] internal method of O with "set".

30.Let setPresent be true.

31.If setter is undefined, go to step 33.

32.If setter is not a function, raise a TypeError exception.

33.If getPresent is false, let setter be undefined.

34.If setPresent is false, let setter be undefined.

35.If O does not have an own property named name, go to step 50.

26 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

36.If either getPresent or setPresent is true, go to step 44.

37.If valuePresent is false, return O.

38.If the own property named name of O is an accessor property, go to step 42.

39.If writable is false, raise a TypeError exception.

40.If configurable is false, raise a TypeError exception.

41.If enumerable is false, raise a TypeError exception.

42.Create a data property of O named name that has a value of value and with no attributes.

43.Return O.

44.If configurable is false, raise a TypeError exception.

45.If enumerable is true, raise a TypeError exception.

46.If writable is not undefined, raise a TypeError exception.

47.If valuePresent is true, raise a TypeError exception.

48.Create an accessor property of O named name that has a set function of setter, a get function of
getter, and that has the DontEnum attribute.

49.Return O.

50.If the own property named name of O is an accessor property, go to step 65.

51.If either getPresent or setPresent is true, go to step 59.

52.If valuePresent is false, return O.

53.Call the [[Put]] method of desc, passing "value" and value as arguments.

54.If configurable is false, raise a TypeError exception.

55.If writable is false, raise a TypeError exception.

56.If enumerable is false, raise a TypeError exception.

57.Set the value of the data property of O named name to value.

58.Return O.

59.If configurable is false, raise a TypeError exception.

60.If enumerable is true, raise a TypeError exception.

61.If writable is not undefined, raise a TypeError exception.

62.If valuePresent is true, raise a TypeError exception.

63.Convert the own property of O named name into an accessor property that has a set function of
setter, a get function of getter, and that has the DontEnum attribute.

64.Return O.

27 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

65.If valuePresent is true, go to step 73.

66.If neither getPresent nor setPresent is true, return O.

67.If configurable is false, raise a TypeError exception.

68.If enumerable is true, raise a TypeError exception.

69.If writable is not undefined, raise a TypeError exception.

70.If setPresent is true, set the set function of the accessor property of O named name to setter.

71.If getPresent is true, set the get function of the accessor property of O named name to getter.

72.Return O.

73.If either getPresent or setPresent is true, go to step 79.

74.If configurable is false, raise a TypeError exception.

75.If writable is false, raise a TypeError exception.

76.If enumerable is false, raise a TypeError exception.

77.Call the [[Put]] method of O passing name and value as arguments.

78.Return O.

79.If configurable is false, raise a TypeError exception.

80.If enumerable is true, raise a TypeError exception.

81.If writable is not undefined, raise a TypeError exception.

82.Raise a TypeError exception.

2.4.4 Properties of Function Instances

JScript 5.x defines additional properties of Function instances of [ECMA-262]. These properties are
described in the following sections.

2.4.4.1 The arguments Property

The value of the arguments property of a function instance is null. This property has the attributes
{ DontDelete, ReadOnly, DontEnum }. However, function instances also have a special [[Get]]
internal method which in certain circumstances will return a value other than null when accessing
the arguments property.

2.4.4.2 The caller Property

The value of the caller property of a function instance is null. This property has the attributes

{ DontDelete, ReadOnly, DontEnum }. However,function instances also have a special [[Get]]
internal method which in certain circumstances will return a value other than null when accessing
the caller property.

http://go.microsoft.com/fwlink/?LinkId=153655

28 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.4.4.3 The [[Get]] (P) Method of a Function Object

Assume F is a Function object.

When the [[Get]] method of F is called with value P, the following steps are taken:

1. If P is not the string 'arguments' then go to step 6.

2. If an active execution context for F does not exist, go to step 13.

3. Let X be the most recently created active execution context for F.

4. If X is marked as having a partially accessible arguments object, let A be the orginal arguments
object for X; otherwise, let A be the value of the property named 'arguments' of X’s variable
object.

5. Return A.

6. If P is not the string 'caller', go to step 13.

7. Let X be the most recently created active execution context for F.

8. If X does not have an execution context to which it could normally exit, return null.

9. Let R be the execution context which would become the current execution context if X exited
normally (not via an exception).

10.If R is an execution context for a built-in function or a host object function, return null.

11.If R is an execution context for global code or for eval code, return null.

12.R must be an execution context for function code, so return the function object whose call
caused R to be created.

13.Return the result of calling the default [[Get]] method ([ECMA-262] section 8.6.2.1) passing P
as the argument.

2.4.5 String.prototype HTML Wrapper Properties

JScript 5.x defines String.prototype functions that wrap the string value of a this value with an
HTML tag. The following abstraction is used to specify the behavior of these functions.

The abstract operation WrapWithHTML is called with arguments body, tag, attribute, and data. The
tag and attribute arguments must be strings; attribute and data may be obmitted. The following
steps are performed:

1.Append the character "<" to the characters of tag.

2.If attribute is not present, go to Step 7.

3.Append to Result(1) a single-space character followed by the characters of attribute.

4.Append to Result(3) the characters "=" and """.

5.Append to Result(4) the characters of the string returned by ToString(data).

6.Append to Result(5) the character """.

7.If attribute is present, use Result(6); otherwise, use Result(1).

http://go.microsoft.com/fwlink/?LinkId=153655

29 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

8.Append to Result(7) the character ">".

9.Append to Result(8) the characters of the string returned by ToString(body).

10.Append to Result(9) the characters "<" and "/".

11.Append to Result(10) the characters of tag.

12.Append to Result(11) the character ">".

13.Return the string value of the characters from Result(12).

2.4.5.1 String.prototype.anchor(name)

Return the result of WrapWithHTML(this value, "A", "NAME", name).

2.4.5.2 String.prototype.big()

Return the result of WrapWithHTML(this value, "BIG").

2.4.5.3 String.prototype.blink()

Return the result of WrapWithHTML(this value, "BLINK").

2.4.5.4 String.prototype.bold()

Return the result of WrapWithHTML(this value, "B").

2.4.5.5 String.prototype.fixed()

Return the result of WrapWithHTML(this value, "TT").

2.4.5.6 String.prototype.fontcolor(color)

Return the result of WrapWithHTML(this value, "FONT", "COLOR", color).

2.4.5.7 String.prototype.fontsize(size)

Return the result of WrapWithHTML(this value, "FONT", "SIZE", size).

2.4.5.8 String.prototype.italics()

Return the result of WrapWithHTML(this value, "I").

2.4.5.9 String.prototype.link(url)

Return the result of WrapWithHTML(this value, "A", "HREF", url).

2.4.5.10 String.prototype.small()

Return the result of WrapWithHTML(this value, "SMALL").

2.4.5.11 String.prototype.strike()

Return the result of WrapWithHTML(this value, "STRIKE").

30 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.4.5.12 String.prototype.sub()

Return the result of WrapWithHTML(this value, "SUB").

2.4.5.13 String.prototype.sup()

Return the result of WrapWithHTML(this value, "SUP").

2.4.6 Date Time String Format for JSON

This section is based upon the ECMAScript 5th Edition Specification, [ECMA-262/5]. The format
defined here is used only by JScript 5.8 for the Date.prototype.toJSON method.

ECMAScript defines a string interchange format for date-times based upon a simplification of the

[ISO-8601] Extended Format, which is YYYY-MM-DDTHH:mm:ss.sssZ

These fields are defined as follows:

YYYYDecimal digits of the year in the Gregorian calendar.

-The character "-" (hyphen) appears literally twice in the string.

MMMonth of the year from 01 (January) to 12 (December).

DDDay of the month from 01 to 31.

TThe character "T" appears literally in the string, to indicate the beginning of the time element.

HHNumber of complete hours that have passed since midnight as two decimal digits.

:The character ":" (colon) appears literally twice in the string.

mmNumber of complete minutes since the start of the hour as two decimal digits.

ssNumber of complete seconds since the start of the minute as two decimal digits.

.The character "." (dot) appears literally in the string.

sssNumber of complete milliseconds since the start of the second as three decimal digits.

Both the "." and the milliseconds field may be omitted.

ZTime zone offset is specified as "Z" (for UTC), or either "+" or "-" followed by a time expression
hh:mm

This format includes date-only forms:

YYYY

YYYY-MM

YYYY-MM-DD

It also includes time-only forms with an optional time zone offset appended:

THH:mm

THH:mm:ss

http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=89920

31 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

THH:mm:ss.sss

Also included are "date-times," which may be any combination of the above.

All numbers must be decimal (base 10).

Illegal values (out-of-bounds as well as syntax errors) in a format string means that the format

string is not a valid instance of this format.

Because each day both starts and ends with midnight, the two notations 00:00 and 24:00 are
available to distinguish the two midnights that can be associated with one date. This means that the
following two notations refer to exactly the same moment in time: 1995-02-04T24:00 and 1995-02-
05T00:00

There exists no international standard that specifies abbreviations for civil time zones such as CET,
EST, PDT, and so on. Sometimes the same abbreviation is even used for two very different time

zones. For this reason, [ISO-8601] and this format specify entirely numeric representations of date
and time.

2.4.6.1 Extended Years

The ECMAScript 3rd Edition Specification [ECMA-262] requires the ability to specify 6-digit years
(extended years). This amounts to approximately 285,616 years, either forward or backward, from

01 January, 1970 UTC. To represent years before 0 or after 9999, [ISO-8601] permits the
expansion of the year representation, but only by prior agreement between the sender and the
receiver. In the simplified ECMAScript format, such an expanded year representation shall have 2
extra year digits and is always prefixed with a plus (+) or minus (–) sign. The year 0 is considered
positive and therefore is prefixed with a plus (+) sign.

2.4.6.2 Date.prototype.getVarDate ()

The getVarDate method is implemented as follows:

1. Let t be the time value.

2. It t is NaN, return a date value in VT_DATE format for which the value of ToNumber is NaN.

3. Otherwise, return a date value in VT_DATE format that corresponds to the time value t.

2.4.6.3 Date.prototype.toJSON ()

The toJSON method returns a String value that represents the instance in time that corresponds to

the current Date object. All fields are present in the String. The time zone is always specified in
UTC, denoted by the suffix Z. If this time value is not finite, null is returned.

This method is only defined for JScript 5.8.

2.4.7 Properties of the RegExp Constructor

JScript 5.x defines additional properties of the RegExp constructor of [ECMA-262]. These properties

are described in the following sections.

2.4.7.2 RegExp.input

The initial value of RegExp.input is the empty string. This property shall have the attributes

{ DontEnum, DontDelete }. The value of this property may be modified by calls to

http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=153655

32 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

RegExp.prototype.exec. The properties RegExp.input and RegExp.$_ always have the same
value. When one is set to some value, the other is automatically also set to that same value. Unlike

most other RegExp constructor properties, this property is does not have the ReadOnly attribute.

2.4.7.3 RegExp.lastIndex

The initial value of RegExp.lastIndex is the number −1. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.7.4 RegExp.lastMatch

The initial value of RegExp.lastMatch is the empty string. This property shall have the attributes

{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.7.5 RegExp.lastParen

The initial value of RegExp.lastParen is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.7.6 RegExp.leftContext

The initial value of RegExp.leftContext is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.7.7 RegExp.rightContext

The initial value of RegExp.rightContext is the empty string. This property shall have the
attributes { DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value
may be modified by calls to RegExp.prototype.exec.

2.4.7.8 RegExp.$1 - RegExp.$9

The initial value of RegExp.rightContext is the empty string. This property shall have the

attributes { DontEnum, DontDelete, ReadOnly }. Even though these are ReadOnly properties, their
values may be modified by calls to RegExp.prototype.exec.

2.4.7.9 RegExp.$_

The initial value of each of the properties RegExp.$1, RegExp.$2, RegExp.$3, RegExp.$4,
RegExp.$5, RegExp.$6, RegExp.$7, RegExp.$8, and RegExp.$9 is the empty string. These
properties shall have the attributes { DontEnum, DontDelete, ReadOnly}. The value of this property

may be modified by calls to RegExp.prototype.exec. The properties RegExp.input and
RegExp.$_ always have the same value. When one of these properties is set to some value, the
other is automatically also set to that same value. Unlike most other RegExp constructor

properties, this property does not have the ReadOnly attribute.

33 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.4.7.10 RegExp['$&']

The initial value of RegExp['$&'] is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be

modified by calls to RegExp.prototype.exec.

2.4.7.11 RegExp['$+']

The initial value of RegExp['$+'] is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.7.12 RegExp["$`"]

The initial value of RegExp["$`"] is the empty string. This property shall have the attributes
{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.7.13 RegExp["$'"]

The initial value of RegExp["$'"] is the empty string. This property shall have the attributes

{ DontEnum, DontDelete, ReadOnly }. Even though this is a ReadOnly property, its value may be
modified by calls to RegExp.prototype.exec.

2.4.8 Properties of the RegExp Prototype Object

JScript 5.x defines additional properties of the RegExp Prototype Object of [ECMA-262]. These
properties are described in the following sections.

2.4.8.1 RegExp.prototype.compile(pattern, flags)

If pattern is an object R whose [[Class]] property is "RegExp" and flags is undefined, let P be
the pattern used to construct R and let F be the flags used to construct R. If pattern is an object R

whose [[Class]] property is "RegExp" and flags is not undefined, raise a RegExpError
exception. Otherwise, let P be the empty string if pattern is undefined and ToString(pattern)
otherwise, and let F be the empty string if flags is undefined and ToString(flags) otherwise.

The global property of this RegExp object is set to a Boolean value that is true if F contains the
character "g" and that is false otherwise.

The ignoreCase property of this RegExp object is set to a Boolean value that is true if F contains
the character "i" and that is false otherwise.

The multiline property of this RegExp object is set to a Boolean value that is true if F contains the
character "m" and that is false otherwise.

If F contains any character other than "g", "i", or "m", raise a RegExpError exception.

If P's characters do not have the form Pattern, raise a RegExpError exception. Otherwise, let the

newly constructed object have a [[Match]] property obtained by evaluating ("compiling") Pattern.
Note that evaluating Pattern may raise a RegExpError exception. (Note: if pattern is a
StringLiteral, the usual escape sequence substitutions are performed before the string is processed
by RegExp. If pattern must contain an escape sequence to be recognized by RegExp, the "\"
character must be escaped within the StringLiteral to prevent its being removed when the contents
of the StringLiteral are formed.)

http://go.microsoft.com/fwlink/?LinkId=153655

34 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

The source property of this RegExp object is set as follows:

When pattern is an object R whose [[Class]] property is "RegExp", this RegExp object is set to

the same string value as the value of the source property of pattern. Otherwise, the source
property of this RegExp object is set to P.

The lastIndex property of this RegExp object is set to 0.

The options property of this RegExp object is set as described in section 2.4.9.1.

This RegExp object is optimized using the assumption that it will be executed multiple times.

2.4.9 Properties of the RegExp Instances

JScript 5.x defines an additional property of the RegExp instances of [ECMA-262]. This property is
described in the following section.

2.4.9.1 options

The value of the options property is a string that specifies the values of the global, ignoreCase,
and multiline properties of this RegExp instance. If the value of the ignoreCase property is true,
the string contains the character "i". If the value of the global property is true, the string contains
the character "g". If the value of the multiline property is true, the string contains the character

"i". When present, the characters appear in the order "igm". If all of the global, ignoreCase, and
multiline properties have the value false, the value of this property is the empty string. This
property shall have the attributes { DontDelete, ReadOnly, DontEnum }.

2.4.10 The Error Constructor

JScript 5.x defines additional behaviors of the Error constructor of [ECMA-262]. These behaviors are
described in the following sections.

2.4.10.1 new Error ()

When the Error constructor is called with no arguments, the call is equivalent to calling the Error
constructor and passing the number 0 as the only argument.

2.4.10.2 new Error(number, message)

When the Error constructor is called with two or more arguments, the following steps are taken:

1. The [[Prototype]] property of the newly constructed object is set to the original Error prototype
object, the one that is the initial value of Error.prototype ([ECMA-262] Section 15.11.3.1).

2. The [[Class]] property of the newly constructed Error object is set to "Error".

3. Let num be ToNumber(number).

4. Let msg be ToString(message).

5. The description property of the newly constructed object is set to msg.

6. The message property of the newly constructed object is set to msg.

7. The name property of the newly constructed object is set to "Error".

8. The number property of the newly constructed object is set to num.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

35 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

9. Return the newly constructed object.

2.4.11 Properties of Error Instances

JScript 5.x defines additional error instances inherited from the [[Prototype]] object of [ECMA-

262]. These error instances are described in the following sections.

2.4.11.1 description

The initial value of description is the same as the initial value of message.

2.4.11.2 number

An Error instance only initially has a number property if the first argument passed to the Error

constructor was a number or could be converted to a number. The initial value of number is the
number value passed to the constructor.

2.4.12 Native Error Types Used in This Standard

JScript 5.x defines additional native error types of [ECMA-262]. These error instances are described
in the following sections.

2.4.12.1 RegExpError

Indicates that a regular expression could not be parsed or that an error occurred while matching a
regular expression. See [ECMA-262] Sections 7.8.5, 15.10.2.2, 15.10.2.5, 15.10.2.15, 15.10.4.1,
and 15.10.6.4.

2.4.12.2 ConversionError

This NativeError object is defined by JScript 5.x, but it is not raised by the JScript 5.x

implementation or by any built-in objects.

2.4.13 Properties of NativeError Instances

Error instances inherit properties from their [[Prototype]] object and Error prototype as specified
previously. In addition, those NativeError instances that are created to represent a runtime error
that is detected by the JScript 5.x implementation have the following properties:

2.4.13.1 description

An Error instance only initially has a description property if it is created by the JScript 5.x
implementation in response to the occurrence of a runtime error. The initial value of description is
the same as the initial value of message.

2.4.13.2 number

An Error instance only initially has a number property if it is created by the JScript 5.x

implementation in response to the occurrence of a runtime error. The initial value of number is the
number value passed to the constructor.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

36 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.4.14 The JSON Object

JScript 5.8 provides support for processing objects represented using the JSON Data Interchange
Format. The JSON support in JScript 5.8 is an implementation of the JSON APIs defined in the

ECMAScript 5th Edition Language Specification [ECMA-262/5]. The text in the sections that follow is
a copy of the JSON specification text from clause 15.12 of [ECMA-262/5]. Additions or deletions to
this text reflect variances between the JScript 5.8 JSON support and the original [ECMA-262/5]
specification, and the differences between specification techniques used by the two base
specifications.

The JSON object and its properties are not defined for JScript 5.7. They exist only in JScript 5.8.

The JSON object is a single object that contains two functions, parse and stringify, that are used

to parse and construct JSON texts. The JSON Data Interchange Format is described in[RFC4627].
The JSON interchange format used in this specification is exactly that described by [RFC4627] with
two exceptions:

1. The top level JSONText production of the ECMAScript JSON grammar may consist of any

JSONValue, rather than being restricted to either a JSONObject or a JSONArray as specified by
[RFC4627].

2. Conforming implementations of JSON.parse and JSON.stringify must support the exact
interchange format described in this specification without any deletions or extensions to the
format. This differs from [RFC4627], which permits a JSON parser to accept non-JSON forms and
extensions.

The value of the [[Prototype]] internal property of the JSON object is the standard built-in Object
prototype object ([ECMA-262] Section 15.2.4). The value of the [[Class]] internal property of the
JSON object is "JSON". The value of the [[Extensible]] internal property of the JSON object is set

to true.

The JSON object does not have a [[Construct]] internal property; it is not possible to use the JSON
object as a constructor with the new operator.

The JSON object does not have a [[Call]] internal property; it is not possible to invoke the JSON
object as a function.

2.4.14.1 The JSON Grammar

JSON.stringify produces a String that conforms to the following JSON grammar. JSON.parse
accepts a String that conforms to the JSON grammar.

2.4.14.1.1 The JSON Lexical Grammar

JSON is similar to ECMAScript source text in that it consists of a sequence of characters conforming
to the rules of SourceCharacter. The JSON Lexical Grammar defines the tokens that make up a
JSON text similar to the manner that the ECMAScript lexical grammar defines the tokens of an

ECMAScript source test. The JSON Lexical grammar recognizes only the white space character
specified by the production JSONWhiteSpace. The JSON lexical grammar shares some productions
with the ECMAScript lexical grammar. All nonterminal symbols of the grammar that do not begin

with the characters "JSON" are defined by productions of the ECMAScript lexical grammar.

Syntax

JSONWhiteSpace ::

http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=151303
http://go.microsoft.com/fwlink/?LinkId=151303
http://go.microsoft.com/fwlink/?LinkId=151303
http://go.microsoft.com/fwlink/?LinkId=151303
http://go.microsoft.com/fwlink/?LinkId=153655

37 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

<TAB><CR><LF><SP>

JSONString ::

"JSONStringCharactersopt "

JSONStringCharacters ::

JSONStringCharacter JSONStringCharactersopt

JSONStringCharacter ::

SourceCharacter but not double-quote " or backslash \ or U+0000 thru U+001F

\ JSONEscapeSequence

JSONEscapeSequence ::

JSONEscapeCharacter

UnicodeEscapeSequence

JSONEscapeCharacter :: one of

" / \ b f n r t

JSONNumber ::

-opt DecimalIntegerLiteral JSONFractionopt ExponentPartopt

JSONFraction ::

. [lookahead DecimalDigit]

. DecimalDigits

JSONNullLiteral ::

NullLiteral

JSONBooleanLiteral ::

BooleanLiteral

2.4.14.1.2 The JSON Syntactic Grammar

The JSON Syntactic Grammar defines a valid JSON text in terms of tokens defined by the JSON
lexical grammar. The goal symbol of the grammar is JSONText.

Syntax

JSONText :

JSONValue

JSONValue :

JSONNullLiteralJSONBooleanLiteralJSONObjectJSONArrayJSONStringJSONNumber

38 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

JSONObject :

{ }{ JSONMemberList }

JSONMember :

JSONString : JSONValue

JSONMemberList :

JSONMember JSONMemberList , JSONMember

JSONArray :

[][JSONElementList]

JSONElementList :

JSONValueJSONElementList , JSONValue

2.4.14.2 parse (text [, reviver])

The parse function parses a JSON text (a JSON-formatted String) and produces an ECMAScript
value. The JSON format is a restricted form of ECMAScript literal. JSON objects are realized as
ECMAScript objects. JSON arrays are realized as ECMAScript arrays. JSON strings, numbers,
booleans, and null are realized as ECMAScript Strings, Numbers, Booleans, and null. JSON uses a
more limited set of white space characters than WhiteSpace, and allows Unicode code points

U+2028 and U+2029 to directly appear in JSONString literals without using an escape sequence.
The process of parsing is similar to [ECMA-262/5] sections 11.1.4 and 11.1.5 as constrained by the
JSON grammar.

The optional reviver parameter is a function that takes two parameters, (key and value). It can filter
and transform the results. It is called with each of the key/value pairs produced by the parse, and
its return value is used instead of the original value. If it returns what it received, the structure is
not modified. If it returns undefined, the property is deleted from the result.

1. Let JText be ToString(text).

2. Parse JText using the grammars in [ECMA-262/5] section 15.12.1. Raise a SyntaxError
exception if JText did not conform to the JSON grammar for the goal symbol JSONText.

3. Let unfiltered be the result of parsing and evaluating JText as if it was the source text of an
ECMAScript program (see [ECMA-262] section 14) but using JSONString in place of StringLiteral.
Note that since JText conforms to the JSON grammar, this result will be either a primitive value
or an object that is defined by either an ArrayLiteral or an ObjectLiteral.

4. If (reviver) has a [[Call]] internal property, then

1. Let root be a new object created as if by the expression new Object(), where Object is the
standard built-in constructor with that name.

2. Call the [[Put]] internal method of root with the empty String and unfiltered as arguments.

3. Return the result of calling the abstract operation Walk, passing root and the empty String.
The abstract operation Walk is described later in this section.

5. Else

http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=185963
http://go.microsoft.com/fwlink/?LinkId=153655

39 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Return unfiltered.

The abstract operation Walk is a recursive abstract operation that takes two parameters: a holder

object and the String name of a property in that object. Walk uses the value of reviver that was

originally passed to the previous parse function.

1. Let val be the result of calling the [[Get]] internal method of holder with argument name.

2. If val is an object, then

1. If the [[Class]] internal property of val is "Array"

1. Set I to 0.

2. Let len be the result of calling the [[Get]] internal method of val with argument "length".

3. Repeat while I < len,

1. Let newElement be the result of calling the abstract operation Walk, passing val and

ToString(I).

2. If newElement is undefined, then

Call the [[Delete]] internal method of val with ToString(I).

3. Else

Call the [[Put]] internal method of val with arguments ToString(I) and newElement.

4. Add 1 to I.

2. Else

Let keys be an internal list of String values consisting of the names of all the own

properties of val that do not have the DontEnum attribute. The ordering of the Strings
should be the same as that used by the for-in statement.

Note that JScript 5.x defines properties (see [ECMA-262] 8.6.2.2) such that their DontEnum

attribute is inherited from prototype properties with the same name. As a result of this, any own
properties of value that have the same name as built-in properties that have the DontEnum
attribute are not included in keys.

1. For each String P in keys do,

1. Let newElement be the result of calling the abstract operation Walk, passing val and P.

2. If newElement is undefined, then

Call the [[Delete]] internal method of val with argument P.

3. Else

Call the [[Put]] internal method of val with arguments P and newElement.

2. Return the result of calling the [[Call]] internal method of reviver passing holder as the this
value and with an argument list consisting of name and val.

http://go.microsoft.com/fwlink/?LinkId=153655

40 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

It is not permitted for a conforming implementation of JSON.parse to extend the JSON grammars.
If an implementation wants to support a modified or extended JSON interchange format, it must do

so by defining a different parse function.

NOTE: In the case where there are duplicate name Strings within an object, lexically preceding

values for the same key shall be overwritten.

2.4.14.3 stringify (value [, replacer [, space]])

The stringify function returns a String in JSON format representing an ECMAScript value. It can
take three parameters. The first parameter is required. The value parameter is an ECMAScript value,
which is usually an object or array, although it can also be a String, Boolean, Number, or null. The
optional replacer parameter is either a function that alters the way objects and arrays are

stringified, or an array of Strings and Numbers that acts as a white list for selecting the object
properties that will be stringified. The optional space parameter is a String or Number that allows
the result to have white space injected into it to improve human readability.

These are the steps in stringifying an object:

1. Let stack be an empty List.

2. Let indent be the empty String.

3. Let PropertyList and ReplacerFunction be undefined.

4. If Type(replacer) is Object, then

1. If replacer has a [[Call]] internal property, then

Let ReplacerFunction be replacer.

2. Else if the [[Class]] internal property of replacer is "Array", then

1. Let PropertyList be an empty internal List.

2. For each value v of a property of replacer that has an array index property name. The

properties are enumerated in the ascending array index order of their names.

1. Let item be undefined.

2. If Type(v) is String then let item be v.

3. Else if Type(v) is Object then,

If the [[Class]] internal property of v is "String" or "Number", let item be

ToString(v).

4. If item is not undefined and item is not currently an element of PropertyList then,

Append item to the end of PropertyList.

5. If Type(space) is Object then,

1. If the [[Class]] internal property of space is "Number" then,

Let space be ToNumber(space).

2. Else if the [[Class]] internal property of space is "String" then,

41 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Let space be ToString(space).

6. If Type(space) is Number

1. Let space be min(10, ToInteger(space)).

2. Set gap to a String containing space space characters. This will be the empty String if space is
less than 1.

7. Else if Type(space) is String

If the number of characters in space is 10 or less, set gap to space; otherwise, set gap to a

String consisting of the first 10 characters of space.

8. Else

Set gap to the empty String.

9. Let wrapper be a new object created as if by the expression new Object(), where Object is the

standard built-in constructor with that name.

10.Call the [[Put]] internal method of wrapper with arguments the empty String and value.

11.Return the result of calling the abstract operation Str with the empty String and wrapper.

The abstract operation Str(key, holder) has access to ReplacerFunction from the invocation of the
stringify method. Its algorithm is as follows:

1. Let value be the result of calling the [[Get]] internal method of holder with argument key.

2. If Type(value) is Object, then

1. If value is a host object, return undefined.

2. Let toJSON be the result of calling the [[Get]] internal method of value with argument
"toJSON".

3. If toJSON has a [[Call]] internal property

Let value be the result of calling the [[Call]] internal method of toJSON, passing value as

the this value and with an argument list consisting of key.

3. If ReplacerFunction is not undefined, then

Let value be the result of calling the [[Call]] internal method of ReplacerFunction, passing

holder as the this value and with an argument list consisting of key and value.

4. If Type(value) is Object, then

1. If the [[Class]] internal property of value is "Number", then

Let value be ToNumber(value).

2. Else if the [[Class]] internal property of value is "String", then

Let value be ToString(value).

3. Else if the Class]] internal property of value is "Boolean", then

42 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Let value be the value of the [[Value]] internal property of value.

5. If value is null then return "null".

6. If value is true then return "true".

7. If value is false then return "false".

8. If Type(value) is String, then return the result of calling the abstract operation Quote with
argument value.

9. If Type(value) is Number

1. If value is finite, return ToString(value).

2. Else return "null".

10.If Type(value) is Object, and value does not have a [[Call]] internal property

1. If the [[Class]] internal property of value is "Array", then

Return the result of calling the abstract operation JA with argument value.

2. Else, return the result of calling the abstract operation JO with argument value.

11.Return undefined.

The abstract operation Quote(value) wraps a String value in double quotation marks and escapes
characters within it.

1. Let product be the double quotation mark character.

2. For each character C in value

1. If C is the double quotation mark character or the backslash character

1. Let product be the concatenation of product and the backslash character.

2. Let product be the concatenation of product and C.

2. Else if C is backspace, formfeed, newline, carriage return, or tab

1. Let product be the concatenation of product and the backslash character.

2. Let abbrev be the character corresponding to the value of C as follows:

1. backspace"b"

2. formfeed"f"

3. newline"n"

4. carriage return"r"

5. tab"t"

3. Let product be the concatenation of product and abbrev.

3. Else if C is a control character having a code unit value less than the space character

43 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

1. Let product be the concatenation of product and the backslash character.

2. Let product be the concatenation of product and "u".

3. Let hex be the result of converting the numeric code unit value of C to a String of four
hexadecimal digits.

4. Let product be the concatenation of product and hex.

4. Else

Let product be the concatenation of product and C.

3. Let product be the concatenation of product and the double quotation mark character.

4. Return product.

The abstract operation JO(value) serializes an object. It has access to the stack, indent, gap,

PropertyList, ReplacerFunction, and space of the invocation of the stringify method.

1. If stack contains value, raise a TypeError exception because the structure is cyclical.

2. Append value to stack.

3. Let stepback be indent.

4. Let indent be the concatenation of indent and gap.

5. If PropertyList is not undefined, then

Let K be PropertyList.

6. Else

Let K be an internal List of Strings consisting of the names of all the own properties of value

that do not have the DontEnum attribute. The ordering of the Strings should be the same as

that used by the for-in statement.

Note that JScript 5.x defines properties such that their DontEnum attribute is inherited from

prototype properties with the same name. As a result of this, any own properties of value that have
the same name as built-in properties that have the DontEnum attribute are not included in K.

1. Let partial be an empty List.

2. For each element P of K.

1. Let strP be the result of calling the abstract operation Str with arguments P and value.

If PropertyList is undefined and the call to Str caused new properties to be added tovalue,

add the names those properties to the end of K.

2. If strP is not undefined

1. Let member be the result of calling the abstract operation Quote with argument P.

2. Let member be the concatenation of member and the colon character.

3. If gap is not the empty String

44 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

Let member be the concatenation of member and the space character.

4. Let member be the concatenation of member and strP.

5. Append member to partial.

3. If partial is empty, then

Let final be "{}".

4. Else

1. If gap is the empty String

1. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with the comma character. A comma is not inserted
either before the first String or after the last String.

2. Let final be the result of concatenating "{", properties, and "}".

2. Else if gap is not the empty String

1. Let separator be the result of concatenating the comma character, the line feed character,
and indent.

2. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with separator. The separator String is not inserted

either before the first String or after the last String.

3. Let final be the result of concatenating "{", the line feed character, indent, properties, the
line feed character, stepback, and "}".

5. Remove the last element of stack.

6. Let indent be stepback.

7. Return final.

The abstract operation JA(value) serializes an array. It has access to the stack, indent, gap, and

space of the invocation of the stringify method. The representation of arrays includes only the
elements between zero and array.length – 1 inclusive. Named properties are excluded from the
stringification. An array is stringified as an open left bracket, elements separated by commas, and a
closing right bracket.

1. If stack contains value, raise a TypeError exception because the structure is cyclical.

2. Append value to stack.

3. Let stepback be indent.

4. Let indent be the concatenation of indent and gap.

5. Let partial be an empty List.

6. Let len be the result of calling the [[Get]] internal method of value with argument "length".

7. Let index be 0.

8. Repeat while index < len

45 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

1. Let strP be the result of calling the abstract operation Str with arguments ToString(index) and
value.

2. If strP is undefined

Append "null" to partial.

3. Else

Append strP to partial.

4. Increment index by 1.

9. If partial is empty ,then

Let final be "[]".

10.Else

1. If gap is the empty String

1. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with the comma character. A comma is not inserted
either before the first String or after the last String.

2. Let final be the result of concatenating "[", properties, and "]".

2. Else

1. Let separator be the result of concatenating the comma character, the line feed character,
and indent.

2. Let properties be a String formed by concatenating all the element Strings of partial with
each adjacent pair of Strings separated with separator. The separator String is not inserted
either before the first String or after the last String.

3. Let final be the result of concatenating "[", the line feed character, indent, properties, the

line feed character, stepback, and "[".

11.Remove the last element of stack.

12.Let indent be stepback.

13.Return final.

NOTE 1:

JSON structures are allowed to be nested to any depth, but they must be acyclic. If value is or
contains a cyclic structure, the stringify function must raise a TypeError exception. This is an

example of a value that cannot be stringified:

a = [];

a[0] = a;

my_text = JSON.stringify(a); // This must raise a TypeError.

46 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

NOTE 2:

Symbolic primitive values are rendered as follows:

The null value is rendered in JSON text as the String null.

The undefined value is not rendered.

The true value is rendered in JSON text as the String true.

The value is rendered in JSON text as the String false.

NOTE 3:

String values are wrapped in double quotes. The characters " and \ are escaped with \ prefixes.
The characters " and \ are escaped with \ prefixes. Control characters are replaced with escape

sequences \uHHHH, or with the shorter forms, \b (backspace), \f (formfeed), \n (newline), \r
(carriage return), \t (tab).

NOTE 4:

Finite numbers are stringified as if by calling ToString(number). NaN and Infinity regardless of sign
are represented as the String null.

NOTE 5:

Values that do not have a JSON representation (such as undefined and functions) do not produce a
String. Instead they produce the undefined value. In arrays, these values are represented as the
String null. In objects, an unrepresentable value causes the property to be excluded from
stringification.

NOTE 6:

An object is rendered as an opening left brace followed by zero or more properties, separated with
commas, closed with a right brace. A property is a quoted String representing the key or property

name, a colon, and the stringified property value. An array is rendered as an opening left bracket
followed by zero or more values, separated with commas, closed with a right bracket.

This is the end of the JSON specification text from the [ECMA-262/5] standard.

2.4.15 The Debug Object

The Debug object is a single object that has some named properties, all of which are functions.

The value of the internal [[Prototype]] property of the Debug object is the Object prototype

object (15.2.3.1). The value of the internal [[Class]] property of the Debug object is "Object".

The Debug object does not have a [[Construct]] property; it is not possible to use the Debug
object as a constructor with the new operator.

The Debug object does not have a [[Call]] property; it is not possible to invoke the Debug object

as a function.

2.4.15.1 Function Properties of the Debug Object

The Debug object inherits properties from the Object prototype object as specified previously, and
also has the following properties.

http://go.microsoft.com/fwlink/?LinkId=185963

47 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.4.15.1.1 write ([item1 [, item2 [, …]]])

If a host-dependent debugging facility is available, ToString is called once, in order, on each item
argument. The result of the call is passed to the debugging facility with the intent that the result be

output to the user without the addition of any line terminator characters. The function returns
undefined regardless of whether or not a debugging facility is present.

2.4.15.1.2 writeln ([item1 [, item2 [, …]]]))

If a host-dependent debugging facility is available, ToString is called once, in order, on each item
argument. The result of the call is passed to the debugging facility with the intent that the result be
output to the user without the insertion of any line terminator characters between item results. A

line terminator should be output after the last item or if there are no item arguments. The function
returns undefined regardless of whether a debugging facility is present.

The length property of the write function is 0.

2.4.16 Enumerator Objects

Enumerator objects provide an alternative mechanism for iterating over the elements of Array
instances and certain host objects.

For such objects, the order of enumeration is the same as occurs for the for-in statement ([ECMA-
262] Section 12.6.4)

2.4.16.1 The Enumerator Constructor Called as a Function

When Enumerator is called as a function rather than as a constructor, it returns undefined.

2.4.16.2 The Enumerator Constructor

When Enumerator is called as part of a new expression, it is a constructor: it initializes the newly
created object.

2.4.16.2.1 new Enumerator ([collection])

When the Enumerator constructor is called with zero or one argument the following steps are
taken:

1. If collection is not present, let collection be undefined and then go to step 6.

2. If collection is an Array instance, go to step 5.

3. If collection is a host object that supports an implementation-dependent enumeration protocol,
go to step 5.

4. Raise a TypeError exception.

5. The [[EnumerationState]] property of the newly created object is set to a state indicating that

the enumeration is at the first item of the enumeration of collection. If collection has no

enumerable items, the state will indicate that the end of the enumeration has been reached.

6. The [[Collection]] property of the newly created object is set to collection.

7. The [[Prototype]] property of the newly constructed object is set to the original Error prototype
object, the one that is the initial value of Enumerator.prototype (15.12+2.3.1).

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

48 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

8. The [[Class]] property of the newly constructed Error object is set to "Object".

9. Return the newly constructed object.

2.4.16.3 Properties of the Enumerator Constructor

The value of the internal [[Prototype]] property of the Enumerator constructor is the Function
prototype object ([ECMA-262] Section 15.3.4).

The value of the length property is 7 (seven). In addition, the Enumerator constructor has the
following property:

2.4.16.3.1 Enumerator.prototype

The initial value of Enumerator.prototype is the Enumerator prototype object (section 2.4.16.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

2.4.16.4 Properties of the Enumerator Prototype Object

The Enumerator prototype object is itself an Enumerator object whose [[Collection]] property is
undefined, and which does not have an [[EnumerationState]] property.

The value of the internal [[Prototype]] internal property of the Enumerator prototype object is
the Object prototype object ([ECMA-262/5] Section 15.2.3.1).

2.4.16.4.1 Enumerator.prototype.constructor

The initial value of Enumerator.prototype.constructor is the built-in Enumerator constructor.

2.4.16.4.2 Enumerator.prototype.atEnd ()

1. If the this object is not an Enumerator object, raise a TypeError exception.

2. Let collection be the value of the this object’s [[Collection]] property.

3. If collection is undefined, return true.

4. Let state be the value of the this object’s [[EnumerationState]] property.

5. If state indicates that the end of the enumeration has been reached, return true.

6. Return false.

2.4.16.4.3 Enumerator.prototype.item ()

1. If the this object is not an Enumerator object, raise a TypeError exception.

2. Let collection be the value of the this object’s [[Collection]] property.

3. If collection is undefined, return undefined.

4. Let state be the value of the this object’s [[EnumerationState]] property.

5. If state indicates that the end of the enumeration has been reached, return undefined.

6. Return the current enumeration item as indicated by state.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=185963

49 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.4.16.4.4 Enumerator.prototype.moveFirst ()

1. If the this object is not an Enumerator object raise a TypeError exception.

2. Let collection be the value of the this object’s [[Collection]] property.

3. If collection is undefined, return undefined.

4. Modify the [[EnumerationState]] property of the this object to a state indicating that the
current enumeration of collection is now positioned at the original first item of the enumeration.
If the current [[EnumerationState]] property indicates that the collection has no enumerable
items, the new state will indicate that the end of the enumeration has been reached.

5. Return undefined.

2.4.16.4.5 Enumerator.prototype.moveNext ()

1. If the this object is not an Enumerator object raise a TypeError exception.

2. Let collection be the value of the this object’s [[Collection]] property.

3. If collection is undefined, return undefined.

4. Let state be the value of the this object’s [[EnumerationState]] property.

5. If state indicates that the end of the enumeration has been reached, return undefined.

6. Modify state to a state indicating that the current enumeration of collection is now positioned at
the next item beyond the current item of the enumeration. The new state may indicate that the
end of the enumeration has been reached.

7. Update the [[EnumerationState]] property of the this object to state.

8. Return undefined.

2.4.16.5 Properties of Enumerator Instances

Enumerator instances inherit properties from their [[Prototype]] object as specified previously.
In addition, Enumerator instances have an internal [[Collection]] property, and may have an
internal [[EnumeratorState]] property.

2.4.17 VBArray Objects

Enumerator objects provide an alternative mechanism for iterating over the elements of Array
instances and certain host objects.

For such objects, the order of enumeration is the same as the for-in statement ([ECMA-262]
section 12.6.4).

2.4.17.1 The VBArray Constructor Called as a Function

When VBArray is called as a function, it raises an exception if the argument is not a SafeArray
value.

2.4.17.1.1 VBArray (value)

When the VBArray function is called, the following steps are taken:

http://go.microsoft.com/fwlink/?LinkId=153655

50 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

1. If Type(value) is SafeArray, return value.

2. Raise a TypeError exception.

2.4.17.2 The VBArray Constructor

When VBArray is called as part of a new expression, it is a constructor: it initializes the newly
created object.

2.4.17.2.1 new VBArray (value)

When the VBArray constructor is called with an argument value of zero or one, the following steps
are taken:

1. If Type(value) is not SafeArray, raise a TypeError exception.

2. The [[SArray]] property of the newly created object is set to value.

3. The [[Prototype]] property of the newly constructed object is set to the initial value of the
VBArray prototype object (section 2.4.17.3.1).

4. The [[Class]] property of the newly constructed Error object is set to Object.

5. Return the newly constructed object.

2.4.17.3 Properties of the VBArray Constructor

The value of the internal [[Prototype]] property of the VBArray constructor is the Function
prototype object (section 2.4.17.4).

The value of the length property is 1. In addition, the VBArray constructor has the
VBArray.prototype property (section 2.4.17.3.1).

2.4.17.3.1 VBArray.prototype

The initial value of VBArray.prototype is the VBArray prototype object section 2.4.17.4.

This property has the attributes DontEnum, DontDelete, ReadOnly.

2.4.17.4 Properties of the VBArray Prototype Object

The VBArray prototype object is VBArray object whose [[SArray]] property is a SafeArray that
references a COM SAFEARRAY with 0 dimensions.

The value of the internal [[Prototype]] property of the VBArray prototype object is the Object
prototype object ([ECMA-262] section 15.2.3.1).

2.4.17.4.1 VBArray.prototype.constructor

The initial value of VBArray.prototype.constructor is the built-in VBArray constructor.

2.4.17.4.2 VBArray.prototype.dimensions ()

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

http://go.microsoft.com/fwlink/?LinkId=153655

51 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

3. Get the value of the [[SArray]] property of Result(1).

4. Return the Number that is the number of dimensions of the COM SAFEARRAY referenced by

Result(3).

2.4.17.4.3 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

4. If no arguments were passed to this call, or if the number of arguments passed is greater than
Result(3), raise a RangeError exception.

5. For each argument dim1 through dimN, let IdimX be ToInteger(dimX) where X is the numeric

suffix of the argument name.

6. For each of Idim1 through IdimN, if IdimX is less than the lower bound of dimension X of the
COM SAFEARRAY referenced by Result(3) or if IdimX is greater than the upper bound of
dimension X, raise a RangeError exception.

7. Return the value of the element identified by array indices Idim1 through IdimN in the COM
SAFEARRAY referenced by Result(3).

The length property of the getItem function is 1.

2.4.17.4.4 VBArray.prototype.lbound ([dimension])

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

4. If dimension is not defined, use 1; otherwise, use ToInteger(dimension).

5. Get the Number that is the number of dimensions of the COM SAFEARRAY referenced by
Result(3).

6. If Result(4) is less than 1 or greater than Result(5), raise a RangeError exception.

7. Return the Number that is the lower bound of dimension number Result(4) of the COM
SAFEARRAY referenced by Result(3).

The length property of the lbound function is 0.

2.4.17.4.5 VBArray.prototype.toArray ()

The method copies all the elements of a multi-dimensional COM SAFEARRAY into a one-

dimensional ECMAScript Array instance. When called with no arguments, toArray performs the
following steps:

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

52 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

3. Get the value of the [[SArray]] property of Result(1).

4. Let SA be the COM SAFEARRAY referenced by Result(3).

5. Let dim be the number of dimensions of the SA.

6. If dim is zero, return a new Array object that is created as if by evaluating the expression new

Array(0) using the original Array constructor object.

7. Let size be the total number of array elements of SA.

8. Let A be a new Array object that is created as if by evaluating the expression new Array(size)
using the original Array constructor object.

9. Access the elements of SA in row-major order and store the elements into the array indexed
properties for A starting with property 0.

10.Return A.

2.4.17.4.6 VBArray.prototype.ubound ([dimension])

1. Call ToObject passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

4. If dimension is not defined, use 1; otherwise, use ToInteger(dimension).

5. Get the Number that is the number of dimensions of the COM SAFEARRAY referenced by
Result(3).

6. If Result(4) is less than 1 or greater than Result(5), raise a RangeError exception.

7. Return the Number that is the upper bound of dimension number Result(4) of the COM

SAFEARRAY referenced by Result(3).

The length property of the ubound function is 0.

2.4.17.4.7 VBArray.prototype.valueOf ()

1. Call ToObject, passing the this value as the argument.

2. If Result(1) is not a VBArray instance, raise a TypeError exception.

3. Get the value of the [[SArray]] property of Result(1).

4. Return Result(3).

2.4.17.5 Properties of VBArray Instances

VBArray instance inherits properties from the [[Prototype]] object as specified in
VBArray.prototype.valueOf () section 2.4.17.4.7. In addition, VBArray instances have an
internal [[SArray]] property whose value is the SafeArray from which the instance was
constructed.

53 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

2.4.18 ActiveXObject Objects

ActiveXObject objects provide a mechanism for creating and interacting with host objects provided
by Microsoft Windows ActiveX automation servers.

2.4.18.1 The ActiveXObject Constructor Called as a Function

When ActiveXObject is called as a function, it performs the same argument validation that it
performs when it is called as part of a new expression. After successfully completing validation, it
always raises an Error exception.

2.4.18.1.1 ActiveXObject (name [, location]))

When the ActiveXObject function is called with one or more arguments, the following steps are
taken:

1. Call toPrimitve(name, hint Number).

2. If the type of Result(1) is not String, raise a TypeError exception.

3. If Result(1) is an empty string, raise a TypeError exception.

4. If location is not present go to step 7.

5. Call toPrimitve(location, hint Number).

6. If the type of Result(5) is not String, raise a TypeError exception.

7. Raise an Error exception.

2.4.18.2 The ActiveXObject Constructor

When ActiveXObject is called as part of a new expression, it attempts to create a host object that
corresponds to a Microsoft Windows ActiveX automation object.

2.4.18.2.1 new ActiveXObject ((name [, location]))

When the ActiveXObject constructor is called with one or more arguments, the following steps are
taken:

1. Call toPrimitve(name, hint Number).

2. If the type of Result(1) is not String, raise a TypeError exception.

3. If Result(1) is an empty string, raise a TypeError exception.

4. If location is not present, go to step 7.

5. Call toPrimitve(location, hint Number).

6. If the type of Result(5) is not String, raise a TypeError exception.

7. Attempt to create a host object than can be used to communicate with the application and
application-specific object identified by the String Result(1). If location was present, Result(5)
identifies the server where the application resides; otherwise, the default server (the current
machine) is used as the location of the application.

54 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

8.If any error occurs during Step 7, such that the host object cannot be created, raise an Error
exception.

9.Return Result(7).

The format of the string values passed as arguments to this constructor are defined by the host

operating system.

The object returned by this constructor is a host object. It is not an instance of ActiveXObject and
does not inherit properties from the ActiveXObject prototype object or from Object.prototype.
The specific properties of such objects will vary and are dependent upon the specific argument
values passed to this constructor.

2.4.18.3 Properties of the ActiveXObject Constructor

The value of the internal [[Prototype]] property of the ActiveXObject constructor is the Function
prototype object ([ECMA-262] section 15.3.4).

The value of the length property is 1. In addition, the ActiveXObject constructor has the
ActiveXObject.prototype property (section 2.4.18.3.1).

2.4.18.3.1 ActiveXObject.prototype

The initial value of ActiveXObject.prototype is the ActiveXObject prototype object ([ECMA-262]
section 15.12+3.4).

This property has the attributes DontEnum, DontDelete, ReadOnly.

The value of this property is not used by the ActiveXObject constructor. The value is not used as
the [[Prototype]] value of host objects returned by the ActiveXConstructor.

2.4.18.4 Properties of the ActiveXObject Prototype Object

The ActiveXObject prototype object is an Object instance, not an ActiveXObject instance.

The value of the internal [[Prototype]] property of the ActiveXObject prototype object is the
Object prototype object ([ECMA-262] section 15.2.3.1).

2.4.18.4.1 ActiveXObject.prototype.constructor

The initial value of ActiveXObject.prototype.constructor is the built-in ActiveXObject
constructor.

2.4.18.5 Properties of ActiveXObject Instances

ActiveXObject has no instances. Objects created by the ActiveXObject constructor are host
objects whose properties are determined by the external application associated with the specific
host object.

http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655
http://go.microsoft.com/fwlink/?LinkId=153655

55 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

3 Security Considerations

There are no additional security considerations.

56 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

4 Appendix A: Product Behavior

The information in this specification is applicable to the following product versions. References to
product versions include released service packs.

Windows® Internet Explorer® 7

Windows® Internet Explorer® 8

Exceptions, if any, are noted below. If a service pack number appears with the product version,
behavior changed in that service pack. The new behavior also applies to subsequent service packs of

the product unless otherwise specified.

Unless otherwise specified, any statement of optional behavior in this specification prescribed using
the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that product does not
follow the prescription.

57 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

5 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

58 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

6 Index

A

ActiveXObject Constructor
newActiveXObject 53
The 53

ActiveXObject Constructor Properties 54
prototype 54

ActiveXObject function 53
ActiveXObject Instances Properties 54
ActiveXObject Objects 53
ActiveXObject Prototype Object Properties 54

constructor 54
Applicability 8

C

Change tracking 57
Conditional processing algorithm 10
Conditional source text processing 9

D

Debug Object Function Properties 46
write 47
writeIn 47

E

Enumerator Constructor
The 47

Enumerator Constructor Properties 48
prototype 48

Enumerator Instances Properties 49
Enumerator Objects 47
Enumerator Prototype Object Properties 48

atEnd 48
constructor 48
item 48
moveFirst 49
moveNext 49

Error Constructor 34
newError () 34
newError(number

message) 34
Error Instances Properties 35

number 35

F

Function Instance Properties
arguments 27
caller 27

Function Instances 27
Function Object Methods

[[Get]] 28

G

Global Object Function Properties

CollectGarbage 21
GetObject 22
RuntimeObject 21
ScriptEngine 20
ScriptEngineBuildVersion 20
ScriptEngineMajorVersion 20
ScriptEngineMinorVersion 20

Global state 9
Glossary 6

I

Implementer - security considerations 55
Informative references 7
Introduction 6

J

JSON Grammar
The 36

JSON Lexical Grammar
The 36

JSON methods
date time string format (section 2.4.6 30, section

2.4.6.1 31)
getVarDate 31
toSJON 31

JSON Object
The 36

JSON Object Functions
parse 38
stringify 40

JSON Syntactic Grammar
The 37

N

Native Error Instances Properties 35
description 35
number 35

Native Error Types 35
ConversionError 35
RegExpError 35

Normative references 6

O

Object Functions 23
defineProperty 24
getOwnPropertyDescriptor 23

Objects
Global 20

Overview (synopsis) 7

P

Product behavior 56

R

59 / 59

[MS-ES3EX] — v20100325
 Microsoft JScript Extensions to the ECMAScript Language Specification Third Edition

 Copyright © 2010 Microsoft Corporation.

 Release: Thursday, March 25, 2010

References
informative 7
normative 6

RegExp constructor 31
RegExp constructor properties

index
input 31
lastIndex 32
lastMatch 32
lastParen 32
leftContext 32
RegExp.$_ 32
RegExp.$1 – RegExp.$9 32
RegExp[(section 2.4.7.12 33, section 2.4.7.13

33)
RegExp['$&'] 33
RegExp['$+'] 33
rightContext 32

RegExp Instances Properties 34
options 34

RegExp Prototype Object Properties (section 2.4.8
33, section 2.4.8.1 33)

S

Security - implementer considerations 55
Statements

debugger 20
String.prototype functions 28

anchor 29
big 29
blink 29
bold 29
fixed 29
fontcolor 29
fontsize 29
italics 29
link 29
small 29
strike 29
sub 30
sup 30

T

Tracking changes 57
Types

SafeArray 19
VarDate 19

V

VBArray (value) 49
VBArray Constructor

newArray (value) 50
The 50

VBArray Constructor Properties 50

VBArray.prototype 50
VBArray Instances Properties 52
VBArray Objects 49
VBArray Prototype Object Properties 50

constructor (section 2.4.17.4.1 50, section
2.4.17.4.2 50)

getItem 51
lbound 51
toArray 51
ubound 52
valueOf 52

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Extension Overview (Synopsis)
	1.3.1 Organization of This Documentation

	1.4 Relationship to Protocols and Other Extensions
	1.5 Applicability Statement

	2 Extensions
	2.1 Conditional Source Text Processing
	2.1.1 Global State
	2.1.2 Conditional Processing Algorithm

	2.2 Extensions to Types
	2.2.1 SafeArray Type
	2.2.2 VarDate Type

	2.3 Extensions to Statements
	2.3.1 debugger Statement

	2.4 Extensions to Native ECMAScript Objects
	2.4.1 Function Properties of the Global Object
	2.4.1.1 ScriptEngine
	2.4.1.2 ScriptEngineBuildVersion
	2.4.1.3 ScriptEngineMajorVersion
	2.4.1.4 ScriptEngineMinorVersion
	2.4.1.5 CollectGarbage
	2.4.1.6 RuntimeObject
	2.4.1.7 GetObject

	2.4.2 Constructor Properties of the Global Object
	2.4.3 Object Functions in JScript 5.8
	2.4.3.1 Object.getOwnPropertyDescriptor (O, P)
	2.4.3.2 Object.defineProperty (O, P, Attributes)

	2.4.4 Properties of Function Instances
	2.4.4.1 The arguments Property
	2.4.4.2 The caller Property
	2.4.4.3 The [[Get]] (P) Method of a Function Object

	2.4.5 String.prototype HTML Wrapper Properties
	2.4.5.1 String.prototype.anchor(name)
	2.4.5.2 String.prototype.big()
	2.4.5.3 String.prototype.blink()
	2.4.5.4 String.prototype.bold()
	2.4.5.5 String.prototype.fixed()
	2.4.5.6 String.prototype.fontcolor(color)
	2.4.5.7 String.prototype.fontsize(size)
	2.4.5.8 String.prototype.italics()
	2.4.5.9 String.prototype.link(url)
	2.4.5.10 String.prototype.small()
	2.4.5.11 String.prototype.strike()
	2.4.5.12 String.prototype.sub()
	2.4.5.13 String.prototype.sup()

	2.4.6 Date Time String Format for JSON
	2.4.6.1 Extended Years
	2.4.6.2 Date.prototype.getVarDate ()
	2.4.6.3 Date.prototype.toJSON ()

	2.4.7 Properties of the RegExp Constructor
	2.4.7.2 RegExp.input
	2.4.7.3 RegExp.lastIndex
	2.4.7.4 RegExp.lastMatch
	2.4.7.5 RegExp.lastParen
	2.4.7.6 RegExp.leftContext
	2.4.7.7 RegExp.rightContext
	2.4.7.8 RegExp.$1 - RegExp.$9
	2.4.7.9 RegExp.$_
	2.4.7.10 RegExp['$&']
	2.4.7.11 RegExp['$+']
	2.4.7.12 RegExp["$`"]
	2.4.7.13 RegExp["$'"]

	2.4.8 Properties of the RegExp Prototype Object
	2.4.8.1 RegExp.prototype.compile(pattern, flags)

	2.4.9 Properties of the RegExp Instances
	2.4.9.1 options

	2.4.10 The Error Constructor
	2.4.10.1 new Error ()
	2.4.10.2 new Error(number, message)

	2.4.11 Properties of Error Instances
	2.4.11.1 description
	2.4.11.2 number

	2.4.12 Native Error Types Used in This Standard
	2.4.12.1 RegExpError
	2.4.12.2 ConversionError

	2.4.13 Properties of NativeError Instances
	2.4.13.1 description
	2.4.13.2 number

	2.4.14 The JSON Object
	2.4.14.1 The JSON Grammar
	2.4.14.1.1 The JSON Lexical Grammar
	2.4.14.1.2 The JSON Syntactic Grammar

	2.4.14.2 parse (text [, reviver])
	2.4.14.3 stringify (value [, replacer [, space]])

	2.4.15 The Debug Object
	2.4.15.1 Function Properties of the Debug Object
	2.4.15.1.1 write ([item1 [, item2 [, …]]])
	2.4.15.1.2 writeln ([item1 [, item2 [, …]]]))

	2.4.16 Enumerator Objects
	2.4.16.1 The Enumerator Constructor Called as a Function
	2.4.16.2 The Enumerator Constructor
	2.4.16.2.1 new Enumerator ([collection])

	2.4.16.3 Properties of the Enumerator Constructor
	2.4.16.3.1 Enumerator.prototype

	2.4.16.4 Properties of the Enumerator Prototype Object
	2.4.16.4.1 Enumerator.prototype.constructor
	2.4.16.4.2 Enumerator.prototype.atEnd ()
	2.4.16.4.3 Enumerator.prototype.item ()
	2.4.16.4.4 Enumerator.prototype.moveFirst ()
	2.4.16.4.5 Enumerator.prototype.moveNext ()

	2.4.16.5 Properties of Enumerator Instances

	2.4.17 VBArray Objects
	2.4.17.1 The VBArray Constructor Called as a Function
	2.4.17.1.1 VBArray (value)

	2.4.17.2 The VBArray Constructor
	2.4.17.2.1 new VBArray (value)

	2.4.17.3 Properties of the VBArray Constructor
	2.4.17.3.1 VBArray.prototype

	2.4.17.4 Properties of the VBArray Prototype Object
	2.4.17.4.1 VBArray.prototype.constructor
	2.4.17.4.2 VBArray.prototype.dimensions ()
	2.4.17.4.3 VBArray.prototype.getItem (dim1 [, dim2, [dim3, …]])
	2.4.17.4.4 VBArray.prototype.lbound ([dimension])
	2.4.17.4.5 VBArray.prototype.toArray ()
	2.4.17.4.6 VBArray.prototype.ubound ([dimension])
	2.4.17.4.7 VBArray.prototype.valueOf ()

	2.4.17.5 Properties of VBArray Instances

	2.4.18 ActiveXObject Objects
	2.4.18.1 The ActiveXObject Constructor Called as a Function
	2.4.18.1.1 ActiveXObject (name [, location]))

	2.4.18.2 The ActiveXObject Constructor
	2.4.18.2.1 new ActiveXObject ((name [, location]))

	2.4.18.3 Properties of the ActiveXObject Constructor
	2.4.18.3.1 ActiveXObject.prototype

	2.4.18.4 Properties of the ActiveXObject Prototype Object
	2.4.18.4.1 ActiveXObject.prototype.constructor

	2.4.18.5 Properties of ActiveXObject Instances

	3 Security Considerations
	4 Appendix A: Product Behavior
	5 Change Tracking
	6 Index

