/*------------------------------------------------------------------------------------------*\ This file contains material supporting chapter 8 of the cookbook: Computer Vision Programming using the OpenCV Library. by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify, and distribute this source code, or portions thereof, for any purpose, without fee, subject to the restriction that the copyright notice may not be removed or altered from any source or altered source distribution. The software is released on an as-is basis and without any warranties of any kind. In particular, the software is not guaranteed to be fault-tolerant or free from failure. The author disclaims all warranties with regard to this software, any use, and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name \*------------------------------------------------------------------------------------------*/ #if !defined HARRISD #define HARRISD #include #include #include #include #include class HarrisDetector { private: // 32-bit float image of corner strength cv::Mat cornerStrength; // 32-bit float image of thresholded corners cv::Mat cornerTh; // image of local maxima (internal) cv::Mat localMax; // size of neighbourhood for derivatives smoothing int neighbourhood; // aperture for gradient computation int aperture; // Harris parameter double k; // maximum strength for threshold computation double maxStrength; // calculated threshold (internal) double threshold; // size of neighbourhood for non-max suppression int nonMaxSize; // kernel for non-max suppression cv::Mat kernel; public: HarrisDetector() : neighbourhood(3), aperture(3), k(0.1), maxStrength(0.0), threshold(0.01), nonMaxSize(3) { setLocalMaxWindowSize(nonMaxSize); } // Create kernel used in non-maxima suppression void setLocalMaxWindowSize(int size) { nonMaxSize= size; kernel.create(nonMaxSize,nonMaxSize,CV_8U); } // Compute Harris corners void detect(const cv::Mat& image) { // Harris computation cv::cornerHarris(image,cornerStrength, neighbourhood,// neighborhood size aperture, // aperture size k); // Harris parameter // internal threshold computation double minStrength; // not used cv::minMaxLoc(cornerStrength,&minStrength,&maxStrength); // local maxima detection cv::Mat dilated; // temporary image cv::dilate(cornerStrength,dilated,cv::Mat()); cv::compare(cornerStrength,dilated,localMax,cv::CMP_EQ); } // Get the corner map from the computed Harris values cv::Mat getCornerMap(double qualityLevel) { cv::Mat cornerMap; // thresholding the corner strength threshold= qualityLevel*maxStrength; cv::threshold(cornerStrength,cornerTh,threshold,255,cv::THRESH_BINARY); // convert to 8-bit image cornerTh.convertTo(cornerMap,CV_8U); // non-maxima suppression cv::bitwise_and(cornerMap,localMax,cornerMap); return cornerMap; } // Get the feature points vector from the computed Harris values void getCorners(std::vector &points, double qualityLevel) { // Get the corner map cv::Mat cornerMap= getCornerMap(qualityLevel); // Get the corners getCorners(points, cornerMap); } // Get the feature points vector from the computed corner map void getCorners(std::vector &points, const cv::Mat& cornerMap) { // Iterate over the pixels to obtain all feature points for( int y = 0; y < cornerMap.rows; y++ ) { const uchar* rowPtr = cornerMap.ptr(y); for( int x = 0; x < cornerMap.cols; x++ ) { // if it is a feature point if (rowPtr[x]) { points.push_back(cv::Point(x,y)); } } } } // Draw circles at feature point locations on an image void drawOnImage(cv::Mat &image, const std::vector &points, cv::Scalar color= cv::Scalar(255,255,255), int radius=3, int thickness=2) { std::vector::const_iterator it= points.begin(); // for all corners while (it!=points.end()) { // draw a circle at each corner location cv::circle(image,*it,radius,color,thickness); ++it; } } }; #endif